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1. Introduction and a Single Layer Fit

There is a lot to take in when learning neural nets.

In general, neural net models are composed of layers where each
layer consists of a set of units also called neurons.

How do all the layers of neurons give us y = f (x) ??????!!!!!
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Lots of issues to address:

I how do the units in a layer help us to build up interesting
functions?

I how do the layers help us to build up interesting functions?

I how do you use neural nets with (i) numeric outcomes, (ii)
binary outcomes, (iii) multinoulli outomes

I optimization issues in learning neural nets.

I regularization with L1 and L2 penalties, dropout, and early
stopping.

Let’s start by understanding a neural net model with a single layer
first.
This will help us get a feeling for the first issue above.

After we understand a single layer we can move on to multiple
layers.
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There will be a lot to learn with just a single layer !!!

In general, you can actually fit just about anything with just a
single layer.

But we will see that having multiple layers can be are good way to
build complex models.
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2. Understanding the Basic model, what are units?

Let’s use a single layer neural net model to fit y=medv x=lstat.

Here is the fit with “500 units”.

We use all the data as training data.

The x=lstat was scaled to have mean 0 and variance 1.
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single layer neural net fit, 500 units

looks good !!!
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Here is the fit with “5 units”.
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Does not look quite as good as with 500 units, but let’s pull this
simpler fit apart to see how it actually works.
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Here are the learned parameters.

x weights

(1, 5)

[[-1.6415458 -1.3937181 -3.2372243 -0.6942747 -3.719547 ]]

x bias

(5,)

[ 0.9728854 -0.33562386 -3.4881692 3.0414855 -4.071572 ]

output weights

(5, 1)

[[6.4191284]

[7.04142 ]

[9.101682 ]

[6.1671214]

[9.624342 ]]

output bias

(1,)

[6.1394553]

So how do these numbers give us the function on the previous slide ??? 6



x weights are the wk , k = 1, 2, 3, 4, 5.
x bias are the wk0, k = 1, 2, 3, 4, 5.
output weights are the βk , k = 1, 2, 3, 4, 5.
output bias is β0, k = 1, 2, 3, 4, 5.
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K is the number of units.

In our example, K = 5.

zk = wk0 + wk x , Ak = g(zk), k = 1, 2, . . .K .

f (x) = β0 +
K∑

k=1

βk Ak .

Or, all in one fell swoop,

f (x) = β0 +
K∑

k=1

βk g(wk0 + wk x)

In neural net world the intercepts (β0, wk0) are called the biases.
The coefficients (βk , wk) are called the weights.
g is the activation function.
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Model:

I make K different linear functions of x , one for each unit.

I put the results of each linear function into a nonlinear
activation function giving the activations, one for each unit.

I return a linear function of the K activations.

This gives us a nonlinear function of x .
Clearly, the non-linear activation function g is crucial since if we
just linearly combined linear we would just get linear.

Why is this such a great idea ????
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Various functions of the form β g(w0 + w1 x) for different values of
β, w0, and w1.

We can get get just about any function we want just by adding up
these kinds of functions !!
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Here are the plots of x vs βk Ak for each k = 1, 2, 3, 4, 5 from our
example.
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For example unit 1 gives us the function 6.42 ∗ g(.973− 1.64x).
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Here are the plots of x vs βk Ak for each k = 1, 2, 3, 4, 5
and the sum of the pieces with β0 added on.
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Let’s try this function.

The line drawn through the data is a neural net fit with just three
units.
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Here are the three pieces of the form β g(w0 + w1 x).

The blue is the sum of the black, red, and green.

Then we add the constant β0 to move it down to fit the data.

See how they add up to the bump??
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I did this in R with the nnet package.
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3. More than one x

How does it work with more than one variable in x?

Just make each unit a linear function of the the vector x .
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X = (X1,X2, . . . ,Xp).

zk = wk0 +
∑p

j=1 wkj Xj , Ak = g(zk), k = 1, 2, . . . ,K .

f (X ) = β0 +
∑K

k=1 βk Ak .
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All in one line:

f (X ) = β0 +
K∑

k=1

βk g(wk0 +

p∑
j=1

wkj Xj)

I X is our input layer with each unit corresponding to a
component Xi .

I K units in a single hidden layer. Each unit corresponds to a
linear function of the units in the previous layer.

I a single unit in our output layer.
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A function of the form

β g(w0 +

p∑
j=1

wjXj)

(we dropped k)

Obviously, we can we any function we like by summing up
functions like this !!!
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Different notation, very simple model.

g is the activation function.
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Note

We will be using regularization.

Neural net models have many linear functions !!!

As with our basic linear regression model, if helps a lot if we first
standardize our features.

Note

The features (X ) are the input layer.

The final layer is the output layer.
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Example: Used Cars with mileage and year

75% - 25% train-test split.

In [5]: Xtrs.shape

Out[5]: (750, 2)

In [6]: ytr.shape

Out[6]: (750,)

In [7]: Xtes.shape

Out[7]: (250, 2)

In [8]: yte.shape

Out[8]: (250,)

We use the ”standard scaling” for both mileage and price.
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Here are some plots of the training data.
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Training data. 3D plot of (mileage,year) (scaled) vs price.
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Neural net result with 2 input features (mileage,year) and 50 units
in a single hidden layer.

top row: In and out of sample fits and predictions.
second row: comparison to linear predictions and fit.
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Correlations and rmse on test data.

Compare yte: test y=price, yprednn: neural net prediction,
ypredlin: linear regression prediction.

yte yprednn ypredlin

yte 1.000000 0.938916 0.896020

yprednn 0.938916 1.000000 0.950466

ypredlin 0.896020 0.950466 1.000000

In [16]: f’{minrmse:0.2f}’

Out[16]: ’6.60’

In [17]: f’{rmselin:0.2f}’

Out[17]: ’8.57’
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3D plot of (mileage,year) vs neural net fit on train data.
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What is neural about neural networks??

ISLR:

The name neural network originally derived from thinking
of these hidden units as analogous to neurons in the brain
– values of the activation Ak = hk(X ) close to one are
“firing” while those close to zeror are “silent” (using the
sigmoid activation function).

28



4. Deep Neural Networks

A deep neural network is a neural network with more than one
hidden layer.

The activations at each unit are a linear function of the activations
from the all the units in the previous layer (plus an intercept) put
into a nonlinear activation function. 29



A simple version with 2 layers.
Input layer is X .
First hidden layer has 3 units.
Second hidden layer has 2 units.
Output layer has 2 units.

http://ufldl.stanford.edu/wiki/index.php/Neural_Networks
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The input layer is the feature vector.

Note that the output layer can have more than on unit.

This will be useful when we consider multinoulli outcomes
(categorical outcomes with more than two categories) but for our
basic cases of a single numeric outcome and a binary outcome,
there will be just one unit in the output layer.

In theory, any function can be approximated arbitrarily well with
just a single layer.

But, in some problems in turns out to be effective to incrementally
understand what transformation of X helps us understand Y .
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Chollet, “Deep Learning with Python”, section 2.3.6.

Deep learning .. takes the approach of incrementally de-
composing a complicated geometric transformation into a
long chain of elementary ones. ... Each layer in a deep net-
work applies a transformation that disentangles the data
a little - and a deep stack of layers makes tractable an
extremely complicated disentanglement process.
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Chollet, “Deep Learning with Python”, section 1.2.6.

Two essential essential characteristics of how deep learning learns
from data:

...the incremental, layer-by-layer way in which increasingly
complex representations are developed ...

and
... these intermediate incremental representations are
learned jointly.

Rather than have to do a lot of “feature engineering” the deep
neural net can figure out the potentially complex high dimensional
transformation of the features which is best for predicting y .

33



ISLR, section 10.2.

Modern neural networks typically have more than one hid-
den layer, and often many units per layer. In theory a single
hidden layer with a large number of units has the ability
to approximate most functions. However the learning task
of discovering a good solution is made much easier with
multiple layers each of modest size.

We can think of deep networks as building a complicated function
using a sequence of compositions.

The activations in the units of each layer represent of nonlinear
function of the activations in the previous layers and the network is
the composition of all these functions.

recall: (h o f )(x) = h(f (x)), is the function obtained by the
compostion of h and f .
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Reality check, section 10.6 of ISLR, “When to use Deep Learning”.

Tried Hitters data with neural nets and lasso and with much less
effort got a better out of sample mse with lasso than neural nets.

In addition, the linear model is much simpler and more
interpetable.

Deep learning folks might scoff at this example, but the bulk of
applied statistics is more like the Hitters data than like digit
recognition.
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The basic deep neural net we are considering is called a fully
connected or dense network.

Each unit in each layer is “connected” to each unit of the previous
and subsequent layer.

Some of the big successes in neural nets design very special units
and sets of connections tailored to the structure of the problem.
We have convolution networks for images and recurrent neural
networks for sequences.
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The notation for the general dense network gets a bit intense.
You can skip this if you like.

Let’s start by letting ` index the layers.

` goes from 1 to L where ` = 1 is the input layer (x) and L is the
final output layer.

To keep things simple, we will have just one outcome with
associated activation function gL. For a single numeric outcome,
gL would typically be the identity function I (x) = x .

We will use the same activation function g at all the interior units
(neurons), but it would be a minor change to have activation
function g (`) at layer `.

Let p` be the number of neurons at layer `.
Note that p1 = p where p is the dimension of x since that is the
input layer.
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Lots of Notation !!!!:

Z
(`)
k : the value of the linear function of the activation from the

previous layer at the kth unit of layer (`), k = 1, 2, . . . , p`.

We have Z
(layer)
unit . Similary, we have activations a

(`)
k with,

a
(`)
k = g(Z

(`)
k ).

w
(`)
kj = weight from a

(`)
j (at layer `) to Z

(`+1)
k (at layer (`+ 1)).

Think of w as w
(`)
kj = w

(`)
k←j .

b
(`)
k = intercept for Z

(`+1)
k (at layer (`+ 1)).

Z
(`)
k = b

(`−1)
k +

p(`−1)∑
j=1

w
(`−1)
kj a

(`−1)
j , k = 1, 2, . . . , p`.
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Z
(`)
k = b

(`−1)
k +

p(`−1)∑
j=1

w
(`−1)
kj a

(`−1)
j , k = 1, 2, . . . , p`.

Matrix/Vector version:

Z (`) = (Z
(`)
1 ,Z

(`)
2 , . . . ,Z

(`)
p` )′

a(`) = g(Z (`))

b(`) = (b
(`)
1 , b

(`)
2 , . . . , b

(`)
p(`+1)

)′

W (`) =
[
w

(`)
kj

]
, p(`+1) × p`

Then,
Z (`) = b(`−1) + W (`−1)a(`−1)
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5. Activation Functions

Up until now we have used the sigmoid (or logistic) activation
function:

g(z) =
1

(1 + e−z)

Other commonly used activation functions are tanh (hyperbolic
tangent):

g(z) =
ez − e−z

(ez + e−z)

and the rectified linear unit, or RELU:

g(z) = z for z > 0, and 0 else.
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Intuitively, it does not seem like there should be much of a
difference between sigmoid and tanh, but it turns out tanh works
better for gradient computations and seems to be favoured in the
deep world.

RELU is very popular, especially for images. 41



6. Regularization and Dropout and Early Stopping
We can choose L1 and L2 penalties to regularize the parameter
estimation.

Typically, the regularization is applied to the weights but not the
biases.

Here is a snippet of keras/python code illustrating the building of a
model with two layers and regularization at each layer.

#make model

lp1pen = .0500 #l1 penalty

#nunit = 500

nunit = 100

nx = Xtrs.shape[1] # number of x’s

nn2 = tf.keras.models.Sequential()

## add one hidden layer

nn2.add(tf.keras.layers.Dense(units=nunit,activation=’tanh’,

kernel_regularizer = tf.keras.regularizers.l1(lp1pen),input_shape=(nx,)))

## add second hidden layer

nn2.add(tf.keras.layers.Dense(units=nunit,activation=’tanh’,

kernel_regularizer = tf.keras.regularizers.l1(lp1pen)))

## one numeric output

nn2.add(tf.keras.layers.Dense(units=1))
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Dropout

Dropout is another popular way to regularize a neural net fit.
Eliminate some of the connections.
You simply randomly pick some of the connections to eliminate.
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Early Stopping

Neural nets are fit with an iterative optimization.

As you iterate, the fit on the training data just gets better and
better (hopefully).

As simple and time honored way to “regularize” is just to stop the
iterations before the fit on the training data gets too good.

This is called early stopping.
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7. Optimization

How do we learn all the weights and biases !!!!

There could be a lot of them !!!!

Suppose we have 2 numeric inputs, two hidden layers with 100
units each and 1 numeric output.

Then we have

(2*100) + (100)*(100)+100*1 = 10,300

weights to estimate!!

One thing that makes working with neural nets different is that
you have to have a little understanding of the optimization to run
the software.

You even have to make choices about the optimization !!
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Gradient Descent

As usual we have training data and a loss function L(x , y , θ) where
θ denotes all the weights and biases.

For example with a numeric outcome we have

L(x , y , θ) = (y − ŷ(x , θ))2

We seek to minimize:

n∑
i=1

L(xi , yi , θ).

where θ is all the biases and weights.
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Computing the Hessian matrix is not practical, so the methods are
based on the gradient.

Gradient descent just uses the update

θ → θ − ε 1
n

n∑
i=1

∇L(xi , yi , θ).

where the gradient is with respect to the elements of θ (all the
biases and weights) and ε is called the “learning rate”.
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Stochastic Gradient Descent

If n is big, each update will take a long time to compute.

Stochastic gradient descent computes the gradient using subsets of
the data called minibatches.

At iteration k of the algorithm we select a set of minibatch subsets
of data {xbi , ybi }, i = 1, 2, . . . ,m.

Then we cycle through the minibatches using the update (at each
minibatch):

θ → θ − εk 1
m

m∑
i=1

∇L(xbi , y
b
i , θ).

An epoch is one pass through the entire data set.
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Note:

How do we compute the gradient?

It is just the chain rule.

However, a lot of work has gone into organizing the the
computations so they can be done efficiently and the method for
computing the gradient is called back propogation.

To evaluate the model, you move “forward” through the layers
from inputs to output layer.

To evaluate the gradient you move backward from the output layer.
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Here is a (stolen) picture showing basic gradient descent.

We always move downhill, perpendicular to the contours.

Note, stochastic gradient descent will tend to move downhill but
not with the full gradient information at each move.
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https://www.internalpointers.com/post/gradient-descent-function

This picture illustrates going to different local minimums
depending on the starting value.
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This picture gives the basic idea of how gradient descent could be
much worse than Newton’s method.
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Gradient descent.

Path at left was l2 regularized.
Path at right was not.
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Stochastic Gradient descent.
Epochs color coded.
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This picture shows “gradient” descent in 1-d and illustrates the
role of the learning rate.

x → x − εk f ′(x)

At left we have a small fixed εk .

At right we have a big fixed εk .
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Adaptive Learning rates

Clearly, the learning rate is a key part of procedure.

The are a variety of schemes for adaptively adjusting the learning
rates for individual weights.

Momentum:
Momentum based methods address the problems with local
optima, flat spots, and zigzagging by incorporating the overall
direction of past moves.

Our next step is the a weighted combination of the previous step
and the current gradient information.

θt = θt−1 − εk∇L + γ(θt−1 − θt−2)

where t indexes iteration.
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RMSprop

Weights that have varied a lot in past interations have
downweighted learning rates.

Adam:

Combines momentum and RMSprop idea.
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Clearly fitting a neural net model is no joke !!

The stochastic gradient descent algorithm is typically intiallized
with random values for the parameters.

Since there are local minimum,

you can run it twice and get different answers !!!!

In practice it can be important to ”run it” several times and play
with basic parameters like the number of epochs. This can all end
up being very labour intensive.
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Fitting neural networks: Tips from h2o

I more layers for more complex functions (more nonlinearity).

I more neurons per layer to fit finer structure in data.

I add regularization (max w2=50 or L1 = 1e-5).

I do a grid search to get a feel for parameters.

I try “Tanh”, the “Rectifier”.

I try dropout (input 20%, hidden 50%).

Note: max w2:
An upper limit for the (squared) sum of the incoming weights to a
neuron.
h2o default is to have no limit.
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Network Tuning, ISLR 10.7.4

Has some general comments on “network tuning”.

Have to think about:

I The number of hidden layers, and the number of units per
layer.
“Modern thinking is that the number of units per layer
can be large, and overfitting can be controlled via the
various forms of regularization.”

I Regularization tuning parameters. Dropout, L1, L2, typically
set separately at each layers (also early stopping).

I Details of stochastic gradient descent. batch size, number of
epochs, learning rate.
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If my number of layers/ number of unit architecture is too simple, I
just won’t be able to get a function complicated enough to capture
the patterns in the data.

If I “overdo it” with a too complicated model, I can “reign it it”
with regularization.

This is analogous to putting a lot of predictors in a linear model so
that if you just ran the straight regression it would be ridiculous.

But, I can make it sensible with L1 or L2 regularization.
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8. Cars Example with Deep Learning

Let’s do cars with (mileage,year) and price with more than one
layer.

Note all the choices we have to make about model architecture,
optimization, and regularization.

To make all this concrete, let’s look at the python-keras code.
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Two layers, each with 100 units.
L1 regularization at each layer.
tanh activation at each layer (except output layer).
rmsprop learning rate.
mse loss.

seed=34

random.seed(seed)

np.random.seed(seed)

tf.random.set_seed(seed) ## ? just need this one ??

#make model

lp1pen = .0500 #l1 penalty

nunit = 100

nx = Xtrs.shape[1] # number of x’s

nn2 = tf.keras.models.Sequential()

## add one hidden layer

nn2.add(tf.keras.layers.Dense(units=nunit,activation=’tanh’,

kernel_regularizer = tf.keras.regularizers.l1(lp1pen),input_shape=(nx,)))

## add second hidden layer

nn2.add(tf.keras.layers.Dense(units=nunit,activation=’tanh’,

kernel_regularizer = tf.keras.regularizers.l1(lp1pen)))

## one numeric output

nn2.add(tf.keras.layers.Dense(units=1))

#compile model

nn2.compile(loss=’mse’,optimizer=’rmsprop’,metrics=[’mse’])

# fit

nepoch = 400

nhist2 = nn2.fit(Xtrs,ytr,epochs=nepoch,verbose=1,batch_size=20,validation_data=(Xtes,yte))
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Training.
In out out sample loss (rmse) by epoch.
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Fit on train.
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Out of sample predictions.
yprednn is from the single layer model and yprednn2l is the 2 layers
of 100 units model.
ypredlin is the linear model.

yte yprednn ypredlin yprednn2l

yte 1.000000 0.938916 0.896020 0.942015

yprednn 0.938916 1.000000 0.950466 0.997156

ypredlin 0.896020 0.950466 1.000000 0.942825

yprednn2l 0.942015 0.997156 0.942825 1.000000

In [22]: f’{minrmse:0.2f}’

Out[22]: ’6.63’

Correlation and out-of-sample rmse is about the same as the single
layer model.
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9. Binary classification, IMDB example

Let’s do an example with a binary target y.

Two fundamental things we have to change from the way we did
things with a numeric y are:

I transform the final output to (0,1) so it is a probability
(like we did in logistic regression).

I use cross-entropy loss.
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For example with a single layer we would transform the final ouput
to a probability giving:

P(Y = 1 |,X ,w , β) = F (β0 +
K∑

k=1

βk g(wk0 +

p∑
j=1

wkj Xj))

where F is the sigmoid function and g is any activation function.

In the deep case, ZL is the single output from the final layer and

P(Y = 1 |X ,w , b) = F (ZL).
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IMDB Example

We want to classify movie reviews as positive or negative based on
the text of the reviews.

We have 25,000 train and 25,000 test observations.

We use bag of words to convert the reviews to features

The data is processed so that there are 10,000 possible words.
Each review is then a list of integers giving the word ids in the list.
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What is x?

For example the first train observation has 218 words in the bag.
train data contains the train “x“.

In [27]: type(train_data)

Out[27]: numpy.ndarray

In [28]: type(train_data[0])

Out[28]: list

In [29]: len(train_data)

Out[29]: 25000

In [23]: len(train_data[0])

Out[23]: 218

In [24]: train_data[0][:5]

Out[24]: [1, 14, 22, 16, 43]

In [25]: max(train_data[0])

Out[25]: 7486

In [26]: min(train_data[0])

Out[26]: 1
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In [62]: ## just print out the first nw words from the review

...: rid = 10 # review id to translate to words

...: for i in range(1,15):

...: wid = train_data[rid][i]

...: print(wid,reverse_word_index[wid-3]) #offset of 3

...:

785 french

189 horror

438 cinema

47 has

110 seen

142 something

7 of

6 a

7475 revival

120 over

4 the

236 last

378 couple

7 of
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To use neural nets we need our x to be a numeric feature vector !!

We one-hot enode the bag of words.
Each term is a variable and the bags of words is captured by
dummies for each term indicating whether that term is in the bag
(document).

In [69]: def vseq(seq,dim=10000):

...: res = np.zeros((len(seq),dim))

...: for i, s in enumerate(seq):

...: res[i,s] = 1

...: return res

...:

...: xtr = vseq(train_data)

...: xte = vseq(test_data)

...:

In [70]: xtr.shape

Out[70]: (25000, 10000)

In [71]: xte.shape

Out[71]: (25000, 10000)

In [72]: xtr[:5,:4]

Out[72]:

array([[0., 1., 1., 0.],

[0., 1., 1., 0.],

[0., 1., 1., 0.],

[0., 1., 1., 0.],

[0., 1., 1., 0.]])
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What is y?

The y labels are all 0 or 1 where 1 means a good review and 0
means a bad one.

The data has been chosen so that it is balanced in the sense that
we have just as many good ones as bad ones in both the train and
test data.

In [32]: print(pd.Series(train_labels).value_counts())

...: print(pd.Series(test_labels).value_counts())

...:

1 12500

0 12500

dtype: int64

0 12500

1 12500

dtype: int64
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This does not change the structure of y = (train,test) labels, but
we convert to double.

## labels as 32 arrays

ytr = np.asarray(train_labels).astype(’float32’)

yte = np.asarray(test_labels).astype(’float32’)

print(pd.Series(ytr).value_counts())

print(pd.Series(yte).value_counts())
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Our Model

We know have train/test x/y we can use.

We can see how we do with a neural net model.

model = keras.models.Sequential()

model.add(keras.layers.Dense(16,activation=’relu’,input_shape=(xtr.shape[1],)))

model.add(keras.layers.Dense(16,activation=’relu’))

model.add(keras.layers.Dense(1,activation=’sigmoid’))

I our first layer is just the features with input dimension =
number of columns in x.

I we add two hidden layers, each having 16 units.

I our output layer just has one output with sigmoid activation
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We have to chose our loss function and some details about the
stochastic gradient descent.

I our loss function to optimize is cross entropy.

I we use rsmprop to adaptively adjust the learning rate.

I we also choose an additional measure of loss to monitor which
accuracy (% correct).

model.compile(optimizer=’rmsprop’,loss=’binary_crossentropy’,

metrics=[’accuracy’])
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Let’s split our train data into a train/val subset.
So we are using the three set approach.

## train val

nval = 10000

xval = xtr[:nval]

yval = ytr[:nval]

pxtr = xtr[nval:]

pytr = ytr[nval:]

So our 25,000 train is now 15,000 train and 10,000 validation.
Remember, we still have 25,000 test.
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To actually do the optimization, I still have to choose:

I number of epochs.

I batch size within an epoch.

Keras will keep track of the loss on the train and validation data as
the SGD iterates.

trh = model.fit(pxtr,pytr,epochs=20,batch_size=512,validation_data=(xval,yval))
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In and out of sample loss (cross entropy) plotted versus epoch
number.
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Note that a single epoch has 15000/512 = 30 moves.
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In and out of sample accuracy plotted versus epoch number.
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I refit using the full 25,000 train and just 4 epochs.

mod = keras.models.Sequential()

mod.add(keras.layers.Dense(16,activation=’relu’,input_shape=(xtr.shape[1],)))

mod.add(keras.layers.Dense(16,activation=’relu’))

mod.add(keras.layers.Dense(1,activation=’sigmoid’))

mod.compile(optimizer=’rmsprop’,loss=’binary_crossentropy’,metrics=[’acc’])

# train on all the train

nepoch = 4

mod.fit(xtr,ytr,epochs=nepoch,batch_size=512)

# not evaluate on test data

res = mod.evaluate(xte,yte)

print(res)

[0.29436346888542175, 0.8843600153923035]

88% accuracy on the test data.
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Out of sample (test) confusion matrix.

nte = len(yte)

ypred = np.zeros((nte,))

ypred[phat>.5]=1

cTab = pd.crosstab(yte,ypred)

cTab:

col_0 0.0 1.0

row_0

0.0 10942 1558

1.0 1333 11167

In [9]: np.diag(cTab.to_numpy()).sum()/nte

Out[9]: 0.88436
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out of sample lift.
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out of sample roc/auc.
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10. Simple MNIST: multinoulli classification
Handwritten digits captured as 0-255 grayscale values on a 28× 28
grid.
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Digit recognition:

Guess the digit, given the 282 = 784 values:

where “b” is model parameters (e.g. weights).

Easy for a person, hard for a machine !!
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Note:

Our black and white images are values in [0,255] on a 2
dimensional grid of pixels.

Color images are (r,g,b) values on a grid of pixels.

(r,g,b): red, green, blue.

For example: the input might be 32 x 32 x 3.

Remember, tensors in machine learning are just arrays.
Your data could be an array with lots of dimensions !!

Another common array dimension in data is time.
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In this section of notes we will just do a very simple neural net fit
to the MNIST data.

This is what is done in chapter 2 of “Deep Learning with Python”
by Chollet (keras).

We are mostly using it as a nice example of a classification
problem that is more than binary.

Computer vision is a huge area of application for neural net based
models.
Many layers are used with very specific designs rather than just the
basic dense networks we are looking at. For example, convolutional
neural networks use very special kinds of layers tailored for the
image recognition problem.
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What do we have to change for a non-binary Multinoulli Outcome?

I If we have K possible categories, then we need a final output
layer with K outcomes.

I We use the softmax function as our activation function for the
output layer. This will map the K numeric outcomes to a
probability vector.

I cross entropy loss.
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softmax

x ∈ Rp. x = (x1, x2, . . . , xp), xj ∈ R.
f : Rp → Rp.
f (x) = (f1(x), f2(x), . . . , fp(x))

fj(x) =
exj∑p
j=1 exj

In [1]: import numpy as np

In [2]: x = np.array([-1,0,2])

In [3]: pv = np.exp(x)

In [4]: pv

Out[4]: array([0.36787944, 1. , 7.3890561 ])

In [5]: pv = pv/pv.sum()

In [6]: pv.sum()

Out[6]: 1.0

In [7]: pv

Out[7]: array([0.04201007, 0.1141952 , 0.84379473])
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In the classic MNIST data we have 60,000 train and 10,000 test.

In [8]: print(pd.Series(train_labels).value_counts()/len(train_labels))

...: print(pd.Series(test_labels).value_counts()/len(test_labels))

...:

1 0.112367

7 0.104417

3 0.102183

2 0.099300

9 0.099150

0 0.098717

6 0.098633

8 0.097517

4 0.097367

5 0.090350

dtype: float64

1 0.1135

2 0.1032

7 0.1028

3 0.1010

9 0.1009

4 0.0982

0 0.0980

8 0.0974

6 0.0958

5 0.0892

dtype: float64

In [9]: len(train_labels)

Out[9]: 60000

In [10]: len(test_labels)

Out[10]: 10000
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process x and y

We turn the 28x28 images into vectors of length 282.
We scale the [0,255] grayscale to [0,1].
We one-hot encode the targets.

In [12]: ##################################################

...: ## preparing the image data

...:

...: train_images = train_images.reshape((60000,28*28))

...: train_images = train_images.astype(’float32’)/255

...:

...: test_images = test_images.reshape((10000,28*28))

...: test_images = test_images.astype(’float32’)/255

...:

...: ##################################################

...: ## preparing the labels

...: print(train_labels.dtype)

...: train_labels = keras.utils.to_categorical(train_labels)

...: print(train_labels.dtype)

...: test_labels = keras.utils.to_categorical(test_labels)

...:

...: print(train_labels[:5])

uint8

float32

[[0. 0. 0. 0. 0. 1. 0. 0. 0. 0.]

[1. 0. 0. 0. 0. 0. 0. 0. 0. 0.]

[0. 0. 0. 0. 1. 0. 0. 0. 0. 0.]

[0. 1. 0. 0. 0. 0. 0. 0. 0. 0.]

[0. 0. 0. 0. 0. 0. 0. 0. 0. 1.]]
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Given how we have setup the data, this is how we can make a very
simple model in keras.

## the network architecture

network = keras.models.Sequential()

network.add(keras.layers.Dense(512,activation=’relu’,input_shape=(28*28,)))

network.add(keras.layers.Dense(10,activation=’softmax’))

Just one hidden layer with 512 units.
relu activation.

Final layer has 10 units (one for each digit) and softmax activation.
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I rmsprop for our adaptive learning rate.

I cross entropy for our loss.

I also monitor the accuracy.

##################################################

## the compilation step

network.compile(optimizer=’rmsprop’,loss=’categorical_crossentropy’,metrics=[’accuracy’])
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I 5 epochs.

I batch size 128.

fhist = network.fit(train_images,train_labels, epochs = 5, batch_size = 128)
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Let’ check our performance on the test data.

In [16]: ##################################################

...: ## loss

...:

...: test_loss, test_acc = network.evaluate(test_images,test_labels)

...: print(’test_acc: ’,test_acc)

...: print(’test_loss: ’,test_loss)

...:

313/313 [==============================] - 0s 863us/step - loss: 0.0665 - accuracy: 0.9799

test_acc: 0.9799000024795532

test_loss: 0.06653758883476257

Pretty amazing and this is a ridiculously simple model compared to
the state of the art !!!
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We could run it for more epochs and improve the in-sample fit
(and possibly worse on test!!).
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The ouf-of-sample confusion matrix.

In [43]: cTab

Out[43]:

col_0 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0

row_0

0.0 974 0 0 1 0 1 1 1 2 0

1.0 0 1129 3 1 0 1 1 0 0 0

2.0 6 3 1004 3 1 0 2 6 7 0

3.0 0 0 4 993 0 4 0 5 2 2

4.0 2 0 2 1 960 1 2 3 1 10

5.0 2 0 0 9 1 874 2 1 1 2

6.0 6 3 0 1 4 10 933 1 0 0

7.0 1 5 6 2 0 0 0 1008 2 4

8.0 4 1 4 4 2 11 1 4 940 3

9.0 4 3 0 5 5 2 0 4 2 984

In [44]: np.diag(cTab.to_numpy()).sum()/nte

Out[44]: 0.9799

In [45]: print(’test_acc: ’,test_acc)

...: print(’test_loss: ’,test_loss)

...:

test_acc: 0.9799000024795532

test_loss: 0.06653758883476257
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Simple MNIST Grid Search

I tried a simple grid search for the MNIST data in the software h2o.

Loosely following the advice from h2o and the book on h2o by
Darren Cook, but not wanting to run for too long, I tried the
following 25 = 32 settings.
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All 32 settings.
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I also tried 8 random forests settings.
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Red loss for the 8 random forest setttings.
Blue is the loss for the 32 neural net settings.
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11. Simple Gradient Example

How do we compute the gradient vector?

Let’s explicitly compute the gradient for the simplest version of a
neural net model:

I one x

I one layer of 2 units

I one numeric outcome

I squared error loss
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But how does this work in a general deep network?

The back propagation algorithm works by going back through the
network starting at the loss. At each step backwards all the partial
derivatives are computed which enable us to keep track of the
downstream effect on the loss due to a change in the parameters
upstream.

While an overall deep network is complex it is composed of many
basic linear (often called tensor) operations and the evaluations of
the univariate activation function. Automatic differentiation uses
the chain rule to compute the derivative given a chain of
operations with known analytic derivatives.

Another key to making all this work is parallel computing with
GPU to speed things up.

See section 2.4.4 of Chollet.
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12. How Does it Work Again, XOR

Let’s look again at how a neural net works by playing around with
the famous XOR example.

This is example is famous because it is a simple example where
linear classification:

y = 1 if a + b1x1 + b2x2 > 0

cannot work.
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Basically, y is 1 if the sign(x1) 6= sign(x2) but I added noise so a
few points cross the boundaries.

Here is a plot of the (simulated) data.
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Here is the decision boundary (ŷ = 1 if p̂ > .5) for a linear logit fit.

logit fit to xor data
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Here is a plot of p̂(x1, x2) from the logit fit.
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2

phatlg

Really all the p̂ are close to .5 !! 114



> print(summary(lgfit))

Call:

glm(formula = y ~ ., family = binomial, data = dfd)

Deviance Residuals:

Min 1Q Median 3Q Max

-1.25921 -1.17512 0.02788 1.17894 1.23320

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.01013 0.20113 0.050 0.960

x1 0.10058 0.17129 0.587 0.557

x2 0.03688 0.18028 0.205 0.838

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 138.63 on 99 degrees of freedom

Residual deviance: 138.27 on 97 degrees of freedom

AIC: 144.27

Number of Fisher Scoring iterations: 3

> summary(phatl)

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.4217 0.4676 0.4964 0.4964 0.5253 0.5713
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Let’s try a nn fit.

#uses random starting values for iterative optimization

set.seed(99) #misses

xnn = nnet(y~.,dfd,size=2,decay=.1)

phat1 = predict(xnn,gd)[,1]

set.seed(14) #works

xnn = nnet(y~.,dfd,size=2,decay=.1)

phat = predict(xnn,gd)[,1]

#plot fits, far out!!

plot(phat1,phat)
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Far out.
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Here is the nn decision boundary (from the one that worked).

neural network −− 1 hidden layer with 2 neurons
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Beautiful !!!
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Here is a plot of p̂(x1, x2) from the nn fit.

px1

px
2

phatg

Obvious !!!!????
(see plot3d in xor.R). 119



> summary(xnn)

a 2-2-1 network with 9 weights

options were - entropy fitting decay=0.1

b->h1 i1->h1 i2->h1

3.35 2.38 -2.66

b->h2 i1->h2 i2->h2

-2.73 2.28 -2.90

b->o h1->o h2->o

2.54 -5.84 6.30

Basically uses x1 − x2 !!!!.
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A plot of xnn:

I1
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13. XOR Deep

Let’s try some deep neural nets on the XOR example.
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I did these with the h2o software.
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A nn with one hidden layer having 2 neurons.
tanh activation.

# 1 hidden 2 neurons

model2 = h2o.deeplearning(x=1:2, y=3,

training_frame = dfh2o,

hidden = c(2),

activation = "Tanh",

epochs = 100000,

export_weights_and_biases = TRUE,

model_id = "xor.model2"

#use this if you want to get the same results

#seed=99,reproducible=TRUE

)

#phat on test

phat = h2o.predict(model2, dftest)
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Here is a picture of the fit, looks good.

nn h2o fit to xor data
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Note: if I run it again I could get a solution with very little fit
!!!!!!!!!!!!
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Let’s look at the estimates:

> h2o.biases(model2, vector_id = 1)

C1

1 -11.971459

2 6.656402

> h2o.weights(model2, matrix_id = 1)

x1 x2

1 13.546680 -14.352386

2 7.834642 -7.051126

These are the coefficients going from the input x to the 2 neurons
in the hidden layer.
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These are the coefficents going from the hidden layer to the to the
output.

> h2o.biases(model2, vector_id = 2)

C1

1 -3.094724

2 2.822581

[2 rows x 1 column]

> h2o.weights(model2, matrix_id = 2)

C1 C2

1 -2.588578 -2.885383

2 3.261906 -5.987208

So, O1 = −3.094724− 2.588578g(z1)− 2.885383g(z2).

Recall, we have a binary output so we get two outputs which are
then softmaxed to get a probability vector.
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Deep Features

Remember, in Machine Learning world the x ’s are called the
features.

The last layer has the form

Oj = β0 + βj1x̃1 + βj2 x̃2 + . . .+ βjmx̃m

where m is the number of units in the final layer.

The x̃i are called the deep features.
They are nonlinear tranformations of the original x such that y is
linearly predicted from them. 127



> tmp.df = as.h2o(data.frame(x1=c(-1, -1, 1, 1), x2=c(-1, 1, -1, 1)),

+ destination_frame = "xor.4points")

|======================================================================| 100%

> trans.features = h2o.deepfeatures(model2, tmp.df, layer = 1)

|======================================================================| 100%

> as.matrix( h2o.cbind(tmp.df, trans.features) )

x1 x2 DF.L1.C1 DF.L1.C2

[1,] -1 -1 -1 0.9999284

[2,] -1 1 -1 -0.9999988

[3,] 1 -1 1 1.0000000

[4,] 1 1 -1 0.9999980

> tanh(-11.971459 + 13.54668 -14.352386)

[1] -1

I evaluated the output of the first unit of the hidden layer inputing
(x1, x2) = (1, 1).

“trans.features” t̃ransformed features.
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With the original features I can’t linearly separate the 1’s from the
0s’.

With the transformed features, I can.

Awesome.

This kind of example does make neural nets look magical.
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Let’s try one hidden layer with 10 units and L1 regularization:

model10R = h2o.deeplearning(x=1:2, y=3,

dfh2o,

hidden = c(10),

activation = "Tanh",

epochs = 100000,

export_weights_and_biases = TRUE,

l1 = 1e-2,

model_id = "xor.model10R"

)
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nn h2o fit to xor data
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> h2o.weights(model10R, matrix_id = 1)

x1 x2

1 0.0003904525 -0.0004619349

2 0.8172686100 0.9237694740

3 -0.0004394429 0.0000323276

4 -0.0005785795 -0.0005293362

5 -0.0004584224 0.0002672540

6 0.0004523931 0.0003855705

[10 rows x 2 columns]

> h2o.weights(model10R, matrix_id = 2)

C1 C2 C3 C4 C5

1 0.0003701166 -1.297764 -0.0005743245 -2.533599e-04 -4.597708e-07

2 0.0001853947 1.382249 0.0002720330 -2.158213e-05 -7.892725e-05

C6 C7 C8 C9 C10

1 0.0003624223 2.1420848 0.1726678 -2.6662343 -0.0001776762

2 -0.0005718899 -0.9607086 -2.9622021 0.5610269 -0.0002848183

[2 rows x 10 columns]
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Ok, enough fooling around, let’s get deep.

modelDR = h2o.deeplearning(x=1:2, y=3,

dfh2o,

hidden = c(3,4),

activation = "Tanh",

epochs = 100000,

export_weights_and_biases = TRUE,

l1 = 1e-2,

model_id = "xor.modelDR"

)

Two hidden layers.
First layer has 3 units, second layer has 4 units.

L1 regularization.
tanh activation.
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nn h2o fit to xor data
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2→ 3
3→ 4
4→ 2

> h2o.weights(modelDR, matrix_id = 1)

x1 x2

1 1.5895231962 -0.0305938125

2 -0.0004432469 -0.0001800873

3 0.0122436108 -2.0536758900

[3 rows x 2 columns]

> h2o.weights(modelDR, matrix_id = 2)

C1 C2 C3

1 0.0100201899 -4.842104e-04 1.3224930763

2 1.7325805426 4.302524e-04 1.4567693472

3 0.0002096088 -5.461264e-05 0.0001562708

4 1.3153511286 -6.162645e-04 -1.0473971367

[4 rows x 3 columns]

> h2o.weights(modelDR, matrix_id = 3)

C1 C2 C3 C4

1 0.9344926 -1.814222 0.0004014346 0.2660763

2 -3.0249763 2.523128 -0.0001543377 -3.8591626

[2 rows x 4 columns]
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> h2o.performance(modelDR)

H2OBinomialMetrics: deeplearning

** Reported on training data. **

** Metrics reported on full training frame **

MSE: 0.02630829

RMSE: 0.1621983

LogLoss: 0.1133708

Mean Per-Class Error: 0.03

AUC: 0.9964

Gini: 0.9928

Confusion Matrix for F1-optimal threshold:

0 1 Error Rate

0 47 3 0.060000 =3/50

1 0 50 0.000000 =0/50

Totals 47 53 0.030000 =3/100

Maximum Metrics: Maximum metrics at their respective thresholds

metric threshold value idx

1 max f1 0.394910 0.970874 52

2 max f2 0.394910 0.988142 52

3 max f0point5 0.742596 0.975610 48

4 max accuracy 0.742596 0.970000 48

5 max precision 0.981877 1.000000 0

6 max recall 0.394910 1.000000 52

7 max specificity 0.981877 1.000000 0

8 max absolute_mcc 0.394910 0.941697 52

9 max min_per_class_accuracy 0.742596 0.960000 48

10 max mean_per_class_accuracy 0.742596 0.970000 48
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Let’s try the “max f1” threshold.

contour(px1, px2, phatg, levels=0.3949, labels="", xlab="", ylab="",

main= "nn h2o fit to xor data")

points(x, col=ifelse(g==1, "cornflowerblue","coral"),pch=16)

points(gd, pch=".", cex=1.5, col=ifelse(phatv>0.5, "cornflowerblue","coral"))
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Get’s 3 of the 0’s (red) wrong.

nn h2o fit to xor data
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> ## deep features

> tmp.df = as.h2o(data.frame(x1=c(-1, -1, 1, 1), x2=c(-1, 1, -1, 1)),

+ destination_frame = "xor.4points")

|======================================================================| 100%

> trans.features = h2o.deepfeatures(modelDR, tmp.df, layer = 2)

|======================================================================| 100%

> as.matrix( h2o.cbind(tmp.df, trans.features) )

x1 x2 DF.L2.C1 DF.L2.C2 DF.L2.C3 DF.L2.C4

[1,] -1 -1 0.8399254 -0.9172577 3.285519e-04 -0.9980520

[2,] -1 1 -0.8563508 -0.9996605 3.132807e-05 -0.9047109

[3,] 1 -1 0.8458606 0.9073782 7.016522e-04 -0.8108996

[4,] 1 1 -0.8505694 -0.8524170 4.033999e-04 0.6813285

An input (x1, x2) is mapped nonlinearly to a new x vector with 4
components.

The Deep NN has created nonlinear “deep features” that can be
used to predict y more powerfully than the orginal x features.

Better than throwing in x2 ?? !!
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14. More on Digit Recognition

The digit recognition problem is a famous problem of basic
importance in Machine Learning/Statistics.

Deep neural nets have been very successful
with some special twists !!!

The pixel layout is a very special structure and some approaches
have been developed to take advantage of it.

These approaches coupled with deep learning are the
“state of the art”.

Let’s just get a rough idea of what is involved.
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Besides the usual hidden layers we have looked at, different kinds
of layers are used to take advantage of the spatial pixel structure.

Convolution layers replace a pixel value with a linear combination
of nearby pixels.

Pooling layers replace of rectangular set of pixels with the
maximum value.
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Convolution Layers:

Here is our 282 input layer:

From: http://neuralnetworksanddeeplearning.com/chap6.html
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To get single neuron for the next layer, take a linear combination
of neurons in a box where the neuron is at the top left corner.
(in images you often make the origin the top left).

You have to pick number of neighbors.
There are also “stride” parameters which determine how much you
move the box around to get the “pixels” for the next layer. 143



This will give an ouput layer a little smaller or about the same size
depending on how you do it.
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example

Start with 3x3.
2 x 2 filter.
pad edges with 0s.
end up with 4x 4.
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You use the same weights to combine neuron values in each
subblock.

You learn the weights just like you learn the weights in a dense
network.

You can use multiple convolutions (corresponding to different
weights) associated with the same input layer.

ISLR , pg 413.

the convolved image highlights regions of the original im-
age that resemble the convolution filter.

By “convolution filter” the mean a choice of weights.
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Pooling Layer:

A pooling layer replaces the pixel values in non-overlappying
regions with the maxiumum value.

This will typically reduce the number or neurons in the next layer.
The pooling layer “introduces an elmement of local translation
invariance” (Efron and Hastie).
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ISLR figure 10.8.
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The dream of deep networks is that the layers build up an
understanding of the feature vector x in a hierarchical manner in
which each layer reinterprets the representation from the previous
layers.

We can see this dramatically in convolutional networks where the
pixel structure is (mostly) retained as we build the convolutional
layers.
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Figure 10.6 in ISLR

The network takes in the image and identifies local fea-
tures. It then combines the local features in order to cre-
ate compound features, which in this example includes eyes
and ears. These compound features are used to ouput the
label “tiger”.
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https://www.rsipvision.com/exploring-deep-learning/
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Another cool idea:

Expand the set of examples.

For each (x , y) pair produce a set a pairs
(xs , y) where xs is obtained from x by small distortions:

scaling, rotation, . . .

Then add all the generated (xs , y) to your training data!!!
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Another cool idea:

Use the output of the last layer as a representation of your data.

Fit a model with this representation.
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A true story

A student did a thesis where
x = (f (x1), f (x2), . . . , f (xn)) looks like an evaluation of a function
of a grid of points xj .

Y is disease status of a patient.

The student’s idea was that the derivative f ′(xj) should be what
you use to predict Y and used this with machine learning
techniques.

e.g KNN with ||xa − xb|| = ||f ′(xa)− f ′(xb)||.
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I thought “ a two layer deep neural net should be able to get this
since the first layer can compute the derivative from the function
values and then the second layer can figure out what to do with
the derivative values.”

Tried it and it bombed.
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Increased the L1 regularization and it beat anything the student
had done.
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15. Recurrent Neural Networks

This section follows 10.5 of ISLR closely.

Most of our modeling has assumed that the order of the
observations is not meaninful as is the case with a random sample
from some population.

In many problems our observations are sequences where the order
in which things happen is a fundamental part of the process being
modeled.

I weekly returns on a stock.

I a sequence of words in a document.

I daily temperatures.

We want our model to reflect the order in a sequence of
observations.
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Let X = (X1,X2, . . . ,X`, . . . ,XL) be a sequence.
Hence X` is the `th observed X in the sequence.

X is our input.

For example X` could be the one hot encoding of the `th word in a
document given a dictionary (list of possible words).

Our output is Y which may also be a sequence or just a scalar.

In our basic version of a Recurrent Neural Network (RNN) we will
also have activations (A1,A2, . . . ,A`, . . . ,AL).
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Each X` and each A` can be a vector.

XT
` = (X`1,X`2, . . . ,X`p).

AT
` = (A`1,A`2, . . . ,A`K ).

So, p is the dimension of X and K is the dimension of A.

The X` are our observed sequences.

The A` will the a vector of units which will be nonlinear functions
of the X designed to capture the X information in a way that helps
us predict Y .

So the A our analogous to the the hidden units in a simpler set of
dense layers but they have a special structure to capture the
sequential nature of our system.
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We have weights wkj determining the dependence of A`k on X`j

and weights uks determining the dependence of A`k and A`−1s .

Akl = g(wk0 +

p∑
j=1

wkjX`j +
K∑
s=1

uksA`−1s)

A1 A2 A3 AL-1 AL=A`

O`

Y

X`

O1

X1

O2

X2

O3

X3

OL-1

XL-1

OL

Y

XL
. . .

W

U
B

W

B

W

B

W

B

W

B

W

B

U U U U

With output O`:

O` = β0 +
K∑

k=1

βkA`k .
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The idea is that the vector of activations A` captures the
information from all of the previous X through its dependence on
A`−1 and the new information through its dependence on X`.

What you need to know from the past, is passed on through the A.

Remember, in this simple version, an observation consists of:

(X1,X2, . . . ,X`, . . . ,XL), Y .
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I g is an activation function such as RELU.

I for a categorical Y an activation (e.g sigmoid for binary) can
be applied to O.

I note that the weights W , B, U are the same throughout the
sequence (weight sharing).

The key idea is that the A` capture all the information from
past observed X .

X1 affects O3 through

X1 → A1 → A2 → A3 → O3

pg 423. ... the activations A` accumulate a history of
what has been seen before....
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loss

For single observed X = (X1,X2, . . . ,XL) sequence and numeric Y
we could use our usual loss

(Y − OL)2

Note that here Y is a single observed number and X is a p × L
matrix.

For a data set of observed (xi , yi ) we sum the loss as usual:

n∑
i=1

(yi − OiL)2

where OiL depends on xi each of which is p × L.

In some problems the loss may depend on the sequence of O`

rather than the last one.
For example if we are translating a sentence.
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time and space

The convolution layers for images moved about the the image
computing a weighted combination of spatially close by pixels
using the same weights.

The RNN uses a fixed weight U to see how the present A` is
affected by the close by (previous) A`−1.

The above is a basic RNN.
When used at “full strength” recurrent neural networks can be
quite complex.
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Example: Sentiment Analysis

Previously we looked a the IMDB example where we tried to
predict the “sentiment of a review” (good or bad) from the text of
the review.

We used a “bag of words” approach to try to capture the
information in the review.

x : vector of binary indicators, each element is 1 if the
corresponding word is in the review and 0 otherwise.

y : 1 if the review is good, 0 otherwise.
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Obviously, bag of words loses something from the text that a
human could readily perceive.

How can we use the sequencing of the words in the review to make
a prediction??
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word2vec:

In our bag of words approach, we use binary indicators to tell us
which of 10,000 possible words are in a review is.

In our sequential RNN approach, we could use dummies to say
what each word is in a sequence.

This would give us p = 10000.

word2vec and GloVe map each word to a lower dimensional real
vector in the “embedding space”.

The goal is to do this in such a way that “.. words in the
embedding space preserve semantic meaning; e.g. synonyms
should appear near each other.”
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one hot word encoding and embedding

16 possible words.
document of 20 words.
embedding dimension = 5.

th
is is

on
e of th
e

be
st

fil
m

s

ac
tu

al
ly

th
e

be
st I

ha
ve

ev
er

se
en th

e

fil
m

st
ar

ts

on
e

fa
ll

da
y

O
ne

−
ho

t
E

m
be

d

168



data representation

Each document (and the sentiment) is an observation.

Use last L words of the review.
Documents which are shorter than L, get padded with zeros
upfront.

For each document X = (X1,X2, . . . ,XL) are the embedding
vector reresentations of the corresponding word.

For each document Y is the sentiment.
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ISLR tried:

Embedding dimension = 32.

K=32 hidden units.

Model trained with dropout regularization on the 25,000 train.

Got “a disappointing” 76% on test.

Network using GloVe embeddings did slightly worse.
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Note

See page 426 of ISLR.

We are working with a simple RNN.

Long term and short term (LSTM) versions are more complex and
keep track of more recent information and information from the
more distant past rather than relying on the simple A`−1 → A`

transmission.

ISLR got 87% using LSTM.

State of the art is 95% !!!

171



Example: Time Series Prediction

We have three daily time series from December 3, 1962 to
December 31, 1986.

Each trading day we measure:

I v: log trading volume:
This is the fraction of all outstanding shares that are traded on that day, relative
to a 100 day moving average of past turnover, on the log scale.

I r: Dow Jones return:
difference between the log of the Dow Jones Industrial Index on consecutive
trading days.

I z: Log volatility:
This is based on the absolute value of daily price movements.

(vt , rt , zt), t = 1, 2, . . . ,T = 6, 051.
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Goal: predict vt (log volume) from past observations of all three
series.

Train/Test ??

We can’t just do a random split of observations into train and
test!!!!

You have to predict the future from past information !!!

A simple approach:

Fit a model on the 4,281 observations up to January 2, 1980.

Use the model to predict vt on all subsequent days.
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Time series plots of our three series.
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How do we represent this problem in terms of our basic RNN
structure?

For each t ∈ L + 1, L + 2, . . . ,T we have on observation of the
form:

X1 =

 vt−L

rt−L

zt−L

 , X2 =

 vt−L+1

rt−L+1

zt−L+1

 , . . . ,XL−1 =

 vt−2

rt−2

zt−2

XL =

 vt−1

rt−1

zt−1



Y = vt

Note:

In time series, (vt−l , rt−l , zt−l) are the value at lag l .

We use lagged values (the past) to predict the current value (the
future).
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ISLR tried the model specification:

L = 5.
Use the values of the three series from the past 5 trading days.

K = 12 activations or hidden units (the dimension of each A`).

Note that with L = 5 we have 6,046 observations instead of 6,051
since we have to start with the first day for which we have the 5
lags.
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Does not look bad!

Achieved an (out of sample) R2 of .42 on the test data.
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16. Don’t worry, man vs machine
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