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1. Singular Value Decomposition

This is a key decompostion that applies to any matrix A, m × n.
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SVD:

Let A be m × n.
Then there are

I orthogonal U, m ×m

I orthogonal V , n × n

I diagonal Σ

such that

For integer r ,

σ11 ≥ σ22 . . . ≥ σrr > 0,
and σjj = 0, j > r , σij = 0, i 6= j .
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2. Column space, Row space, and rank

We will see that the first r columns of U are an orthonormal basis
for the column space of X .

We will see that the first r columns of V are an orthonormal basis
for the row space of X .

Hence, the column rank = the row rank, which is then the rank.

So, r is the rank of the matrix.
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Note:

Suppose X is n × p, X = [x1, x2, . . . , xp].

The column space is the span of the xi which is the set
{Xb, b ∈ Rp}.

Suppose B is p × p invertible.

Then
{Xb, b ∈ Rp} = {XBb, b ∈ Rp}

so that the column space of X is the same as the column space of
XB.

Similar result for premultiplying be an invertible matrix for the row
space.
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So, since V ′ is invertible, the column space of A is the column
space of UΣ.

Hence [u1, u2, . . . , ur ] is an orthonormal basis for the column space
of A.

The column rank of A is r .

[ur+1, . . . , um] is an orthonormal basis for the subspace
perpendicular to the column space.
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Similarly, the first r columns of V are an orthonormal basis for the
row space of A.

So, the row rank = the column rank = the rank.

The i = r + 1, . . . , n columns of V for a basis for the subspace of
Rn orthogonal to the row space.
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3. Linear is just a bunch of linear
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A truly remarkable result !!!

Avj = σjj uj , 1 ≤ j ≤ r ,

Avj = 0, (r + 1) ≤ j ≤ n.

A : Rn ⇒ Rm.

I N(A) = {x ∈ Rn, s.t.Ax = 0}, a subspace of dim n − r with
orthonormal basis {vr+1, . . . , vn}.

I R(A) = {Ax , x ∈ Rn}, a subspace of dim r with orthonormal
basis {u1, u2, . . . , ur}.
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So, for A linear R ⇒ R we have the simple form:

y = ax

where A = [a], 1× 1.

In general, after you rotate to certain orthogonal bases, a rank r
linear transformation Rn ⇒ Rm is just the simple one r times.

ỹi = σii x̃i , i = 1, 2, . . . , r .
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r = 2.
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4. Reduced Form

You can simplify the construction to the “reduced form” by getting
rid of the some zeros in Σ and corresponding columns in U and/or
V .

Consider the case where m > n and the rank is n so that the
columns of A, m × n are linearly independent.
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In general we have:

Columns of U1 are an orthonormal basis for the column space of A.

Columns of V1 are an orthonormal basis for the row space of A.
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5. SVD and Least Squares

Let’s see how the SVD decomposition can be used to compute the
least squares solution.

Let’s assume that X , n × p is of full rank p, where of course,

y = Xβ + ε

is our model.
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We simplify the SVD by using the reduced form.
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This just says:
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6. SVD and Spectral

A, m × n. A = UΣV ′.

A′A = [VΣ′U ′][UΣV ′] = VΣ′ΣV ′

So, A′A = VΣ2
nV
′.

Similarly, AA′ = UΣ2
mU
′.

18



7. Moore Penrose Generalized Inverse

In solving the least squares problem, we have generally assumed
that the design matrix X , n × p is of full rank p.

If X is not of full rank then there a many solutions to

min
b
||y − Xb||2

The Moore Penrose inverse chooses a solution for us.
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Clearly, XX+ y = Xbo projects y onto the column space of X .
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XX+ projects onto the column space of X .

X = U1 Σ̃V ′1, X+ = V1 Σ̃−1 U ′1

X X+ = [U1 Σ̃V ′1][V1 Σ̃−1 U1] = U1 U
′
1

X+ X projects onto the row space of X .

X+ X = [V1 Σ̃−1 U ′1][U1 Σ̃V ′1] = V1 V
′
1
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X+ X projects y onto the row space of X . gives us a
characterization of the MP choice of solution.
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The column space and row space of X have the same dimension so
we can define a 1-1 map between them.

Everthing else gets projected away.
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8. Matrix Approximation

Suppose σ11 ≥ σ22 ≥ . . . σrr and after s they are small,
σii ≈ 0, i > s.
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