Dimension Reduction：Principle
 Components and the Autoencoder

Mladen Kolar and Rob McCulloch

1. Introduction
2. Principal Components
3. Autoencoder

1. Introduction

We are in the "unsupervised learning" world.

We have a vector $x \in R^{p}$ of numeric measurements.

If p is big, then we can have a very hard time understanding x.

In dimension reduction, we try to map

$$
x \rightarrow \tilde{x} \in R^{q}, \quad q \ll p
$$

with a minimal loss of information !!

What does minimal loss of information mean??

How could this possibly work??
Basically, if x_{i} are "close" to some lower dimensional object in R^{p} then we may be ok.

We will consider the basic method called principal components which assumes the "lower dimension object" is a linear subspace.

We will also look at the autoencoder approach which, quite remarkably, looks for a nonlinear subset (a manifold). The autoencoder is based on neural networks.

Dimension Reduction and Supervised Learning:

Suppose you succeed and \tilde{x} has the same information as x.

Now suppose you have a supervised problem in which you are trying to predict y from x.

Then, using our intuition from the bias-variance tradeoff, we would be better off building a model

$$
y \mid \tilde{x}
$$

than a model,

$$
y \mid x
$$

since it is much easier to work in lower dimensions.

Of course, "succeed" can be hard to define, and it is unlikely you can map down without losing some information.

Nevertheless is is quite common to try

$$
y \mid \tilde{x}
$$

or

$$
y \mid(x, \tilde{x})
$$

in the hopes of finding a simple model.
This often works in practice!!!

2. Principal Components

Give data x_{i}, we first demean.

Usually we will also want to rescale, to put the comoponents of x on a common footing.

We then let Σ be the sample variance matrix.
That is, the diagonals are the variances and the off-diagonals are the covariances.

If you stardardize by doing the z-score thing $x \rightarrow(x-\bar{x}) / s_{x}$ then Σ is just the sample correlation matrix.

Singular Value Decomposition of a Positive Semi Definite Symmetric Matrix
Σ is clearly symmetric (the (i, j) element equals the (j, i) element).
Note that if a is a p -vector, then

$$
\operatorname{Var}\left(a^{\prime} x\right)=a^{\prime} \Sigma a \geq 0 .
$$

Thus, Σ is positive-semi-definite.

If Σ is psd, then we can always write it as

$$
\Sigma=P D P^{\prime}
$$

where P is orthogonal:

$$
P^{\prime} P=P P^{\prime}=1
$$

All the columns (rows) have length 1 .
All the columns (rows) are orthogonal to each other.
And,

$$
D=\operatorname{diag}\left(d_{i}\right), \quad d_{1} \geq d_{2} \ldots d_{p} \geq 0
$$

Note:

From

$$
\Sigma=P D P^{\prime}
$$

We have

$$
\Sigma P=P D
$$

Let $P=\left[\phi_{1}, \phi_{2}, \ldots, \phi_{p}\right]$.
Then,

$$
\Sigma \phi_{j}=d_{j} \phi_{j}
$$

so, that the columns of P, the ϕ_{j}, are eigen vectors of P with corresponding eigenvalues d_{i}.

Now let

$$
z=P^{\prime} x
$$

then,

$$
\operatorname{Var}(z)=P^{\prime} \Sigma P=P^{\prime} P D P^{\prime} P=D .
$$

Note:

$$
z_{j}=\phi_{j}^{\prime} x=<\phi_{j}, x>
$$

The z_{j} are the principal components.

We have:

- $\operatorname{Var}\left(z_{j}\right)=d_{j}$.
- $\operatorname{cor}\left(z_{j}, z_{k}\right)=0$.
- z_{j} is the coefficient for the projection of x onto ϕ_{j}.

$$
x=P P^{\prime} x=P z=\sum z_{j} \phi_{j}=\sum<\phi_{j}, x>\phi_{j}
$$

$\left.\operatorname{Var}\left(<\phi_{1}, x\right\rangle\right)=\operatorname{Var}\left(z_{1}\right)=d_{1}$ is big.
$\operatorname{Var}\left(<\phi_{2}, x>\right)=\operatorname{Var}\left(z_{2}\right)=d_{2}$ is small.

Key idea:

$$
x_{i}=<x_{i}, \phi_{1}>\phi_{1}+<x_{i}, \phi_{2}>\phi_{2} \equiv z_{i 1} \phi_{1}+z_{i 2} \phi_{2} \approx z_{i 1} \phi_{1} .
$$

In General:

Suppose d_{j} is "small" for $j>k$.
Then

$$
x=P z \approx \sum_{j=1}^{k} \phi_{j} z_{j}
$$

So we let,

$$
x \rightarrow \tilde{x}=\left(z_{1}, z_{2}, \ldots, z_{k}\right),
$$

the first k principal components.

And then,

$$
\tilde{x} \rightarrow \hat{x}=\sum_{j=1}^{k} \phi_{j} z_{j}
$$

will have $\hat{x}_{i} \approx x_{i}$.

USArrests Data

Description:
This data set contains statistics, in arrests per 100,000 residents for assault, murder, and rape in each of the 50 US states in 1973. Also given is the percent of the population living in urban areas.

Usage :

USArrests

Format:

A data frame with 50 observations on 4 variables.
[,1] Murder numeric Murder arrests (per 100,000)
[,2] Assault numeric Assault arrests (per 100,000)
[,3] UrbanPop numeric Percent urban population
[,4] Rape numeric Rape arrests (per 100,000)

```
> ad = USArrests
> states = row.names(ad)
>
> head(ad)
                Murder Assault UrbanPop Rape
\begin{tabular}{lrrrr} 
Alabama & 13.2 & 236 & 58 & 21.2 \\
Alaska & 10.0 & 263 & 48 & 44.5 \\
Arizona & 8.1 & 294 & 80 & 31.0 \\
Arkansas & 8.8 & 190 & 50 & 19.5 \\
California & 9.0 & 276 & 91 & 40.6 \\
Colorado & 7.9 & 204 & 78 & 38.7
\end{tabular}
> summary(ad)
\begin{tabular}{|c|c|c|c|}
\hline Murder & Assault & UrbanPop & Rape \\
\hline Min. : 0.800 & Min. : 45.0 & Min. 32.00 & Min. : 7.30 \\
\hline 1st Qu.: 4.075 & 1st Qu.:109.0 & 1st Qu.:54.50 & 1st Qu.: 15.07 \\
\hline Median : 7.250 & Median :159.0 & Median :66.00 & Median :20.10 \\
\hline Mean : 7.788 & Mean :170.8 & Mean :65.54 & Mean :21.23 \\
\hline 3rd Qu.:11.250 & 3rd Qu.:249.0 & 3rd Qu.:77.75 & 3rd Qu.:26.18 \\
\hline Max. : 17.400 & Max. : 337.0 & Max. 991.00 & Max. \(: 46.00\) \\
\hline
\end{tabular}
```

```
> pcres = prcomp(ad,scale=TRUE)
```

> \#eigen vectors
> $\mathrm{P}=$ pcres\$rotation
> P \%*\% t(P) \#check: should be identity

	Murder	Assault	UrbanPop	Rape
Murder	$1.000000 \mathrm{e}+00$	$3.330669 \mathrm{e}-16$	$9.714451 \mathrm{e}-17$	$1.804112 \mathrm{e}-16$
Assault	$3.330669 \mathrm{e}-16$	$1.000000 \mathrm{e}+00$	$5.551115 \mathrm{e}-17$	$3.330669 \mathrm{e}-16$
UrbanPop	$9.714451 \mathrm{e}-17$	$5.551115 \mathrm{e}-17$	$1.000000 \mathrm{e}+00$	$-7.285839 \mathrm{e}-17$
Rape	$1.804112 \mathrm{e}-16$	$3.330669 \mathrm{e}-16$	$-7.285839 \mathrm{e}-17$	$1.000000 \mathrm{e}+00$

>
> \#square roots of eigen values = standevs of prcomps:
> pcres\$sdev
[1] 1.57487830 .99486940 .59712910 .4164494
> P

	PC1	PC2	PC3	PC4
Murder	-0.5358995	0.4181809	-0.3412327	0.64922780
Assault	-0.5831836	0.1879856	-0.2681484	-0.74340748
UrbanPop	-0.2781909	-0.8728062	-0.3780158	0.13387773
Rape	-0.5434321	-0.1673186	0.8177779	0.08902432

How do you interpret the first principal component?
Note that you can multiply a column by -1 if you like.

The bi-plot tries to plot the first two principal components and their weights in the same plot.

```
##biplot
pcres$rotation= - pcres$rotation
pcres$x = -pcres$x
biplot(pcres,scale=0, cex.lab=1.5,cex.axis=1.5,cex=.6)
```

Two different scales, one for the principal components, and one for the weights.
bottom scale: first principal component left scale: second principal component top scale: weights of first component across our 4 variables right scale: weights of second component across our 4 variables

Notice the two principal components are on the same scale so that you can see how much more variable the first component is than the second.

Plot the variance explained by the principal components.

```
##
pcv = pcres$sdev^2
pve = pcv/sum(pcv)
par(mfrow=c(1,2))
plot(pve,xlab="principal component",ylab="% var explained",
    ylim=c(0,1),type="b", cex.axis=1.5,cex.lab=1.5,col="red",pch=16)
plot(cumsum(pve),xlab="principal component",
    ylab="cumulative % var explained",ylim=c(0,1),type="b",
    cex.axis=1.5,cex.lab=1.5,col="blue",pch=16)
```

Left: \% explained by each one.
Right: cumulative \% explained.

3. Autoencoder

We will use deep neural nets for data reduction.

This is very cool.

The Movie Data

Each row corresponds to a movie.

The first column is the name of the movie.

```
> print(dim(data))
[1] 100 564
> print(data[20:25,c(1,40:47)])
                            X area argu arm armi
1 Star Wars 0.02919095 0.0108981 0.02607413 0.00000000
2 E.T. the Extra-Terrestrial 0.05046324 0.0000000 0.00000000 0.00000000
3 2001: A Space Odyssey 0.00000000 0.0000000 0.03399680 0.00000000
4 \text { The Silence of the Lambs 0.00000000 0.0000000 0.00000000 0.00000000}
5 \mp@code { C h i n a t o w n ~ 0 . 0 2 5 9 5 4 3 2 ~ 0 . 0 0 0 0 0 0 0 ~ 0 . 0 3 4 7 7 4 6 3 ~ 0 . 0 0 0 0 0 0 0 0 }
6 Bridge on the River Kwai 0.01705374 0.0000000 0.00000000 0.05194466
    arrang arrest arriv ask
10.00000000 0.01019338 0.02765395 0.02682460
2 0.00000000 0.00000000 0.00000000 0.04173521
30.00000000 0.00000000 0.01081700 0.08394073
4 0.00000000 0.08187929 0.04442659 0.05745895
50.01207359 0.01359475 0.02950529 0.05724083
60.01586633 0.00000000 0.02908046 0.05641664
[6 rows x 9 columns]
```

From the movie reviews a set of terms was extracted.
Columns 2-564 correspond to the different terms.
The numbers in columns 2-564 are the tf-idf value for a given term in a given movie.
tf-idf
$t f_{v d}$: term frequency of term v in document d :
\% of words in document equal to the given term.
$d f_{v}$: document frequency of of term v over the documents
$\%$ of documents that contain term v

$$
\mathrm{tf}-\mathrm{idf} f_{v d}=t f_{v d} \times \log \left(1 / d f_{v}\right)
$$

"term frequency - inverse document freqency".
Intuition: If a term appear a lot in a document that tells you something about the document, but not so much if it apears in many of the other documents.

There are many variants of the tf-idf measure.

So, to get our data someone:

- Processed all the movie reviews to come up with a set of terms.
- Computed the tf-idf ${ }_{v d}$ for each term and document.

Step 1 is not obvious.

Cook Book:
A high value of tf-idf means that word in that document is important.

I'm not sure the version of tf-idf is exactly the one on the previous slide, I just chose a version that is relatively simple to understand so that we can get the idea.

Just for fun, let's try clustering the movies.

k-means in h2o:

```
set.seed(99)
m = h2o.kmeans(data, x=2:564,k=5,standardize=FALSE,init="PlusPlus")
p = h2o.predict(m,data)
pp = as.vector(p$predict)
tapply(as.vector(data[,1]), as.vector(p$predict), print)
```

init: Specify the initialization mode.
The options are Random, Furthest, PlusPlus, or User.
Random initialization randomly samples the k-specified value of the rows of the training data as cluster centers.

PlusPlus initialization chooses one initial center at random and weights the random selection of subsequent centers so that points furthest from the first center are more likely to be chosen.

Furthest initialization chooses one initial center at random and then chooses the next center to be the point furthest away in terms of Euclidean distance.

User initialization requires the corresponding user_points parameter. Note that the user-specified points dataset must have the same number of columns as the training dataset.

```
$`0'
[1] "Gone with the Wind" "To Kill a Mockingbird" "Braveheart" 
$'1'
    [1] "The Shawshank Redemption" "One Flew Over Cuckoo Nest"
    [3] "The Wizard of Oz" "Psycho"
    [5] "Vertigo"
    [7] "The Silence of the Lambs" "Some Like It Hot"
    [9] "The Exorcist"
[11] "Fargo"
[13] "American Graffiti"
[15] "Rear Window"
[17] "North by Northwest"
$'2'
    [1] "The Godfather" "Casablanca"
    [3] "Lawrence of Arabia" "On the Waterfront"
    [5] "West Side Story" "Star Wars"
    [7] "Chinatown" "12 Angry Men"
    [9] "Dr. Strangelove" "Apocalypse Now"
[11] "LOTR: Return of the King" "Gladiator"
[13] "From Here to Eternity" "Unforgiven"
[15] "Raiders of the Lost Ark" "My Fair Lady"
[17] "Ben-Hur" "Doctor Zhivago"
[19] "Jaws" "Treasure of Sierra Madre"
[21] "The Pianist" "City Lights"
[23] "Giant" "The Grapes of Wrath"
[25] "Shane" "The Green Mile"
[27] "Pulp Fiction"
[29] "The Maltese Falcon" "Double Indemnity"
```

```
$'3'
    [1] "Schindler's List" "Forrest Gump"
    [1] "Schindler's List"
    [5] "Patton"
    [7] "Platoon"
    [9] "The Deer Hunter"
[11] "Mutiny on the Bounty"
$'4'
    [1]
    [1] Raging Bull
    [3] "Titanic"
    [5] "Sunset Blvd."
    [7] "2001: A Space Odyssey"
    [9] "It's a Wonderful Life"
[11] "Gandhi"
[13] "Streetcar Named Desire"
[15] "American in Paris"
[17] "Good, Bad and Ugly"
[19] "Goodfellas"
[21] "It Happened One Night"
[23] "Midnight Cowboy"
[25] "Annie Hall"
[27] "Good Will Hunting"
[29] "Tootsie"
[31] "Nashville"
[33] "The African Queen"
[35] "Wuthering Heights"
    "Saving Private Ryan"
    "Butch Cassidy & Sundance"
    "Dances with Wolves"
    "All Quiet on Western Front"
    "Yankee Doodle Dandy"
    "Citizen Kane"
    "The Godfather: Part II"
    "The Sound of Music"
    "Singin' in the Rain"
    "Amadeus"
    "Rocky"
    "Philadelphia Story"
    "Best Years of Our Lives"
    "The Apartment"
    "The King's Speech"
    "A Place in the Sun"
    "Mr. Smith Goes Washington"
    "Out of Africa"
    "Terms of Endearment"
    "Network"
    "The Graduate"
    "Taxi Driver"
```

Now let's try principal components:

```
m = h2o.prcomp(data, 2:564,k=2)
p = h2o.predict(m,data)
pR = as.matrix(p)
nmov = 50
labels = as.vector(data[1:nmov,1])
plot(pR[1:nmov,],pch=17,col="blue",cex=1.5)
text(pR[1:nmov,],labels,col="blue",pos=3) #pos=3 means above
```

Plot of first two principal components labeled with the movie name.

The Autoencoder

Make you outputs your inputs, but have an internal hidden layer with a small number of units.

Loss function

- For real valued inputs, try to find weights such that

$$
\frac{1}{2} \sum_{k}\left(x_{k}-\hat{x}_{k}\right)^{2}
$$

is minimized

- For binary input cross entropy is used, which is similar to deviance

Autoencoder in h2o for the movies data:

```
m = h2o.deeplearning(2:564,training_frame=data,hidden=c(2),
    autoencoder=T,activation="Tanh")
f= h2o.deepfeatures(m,data,layer=1)
fR = as.matrix(f)
#perfm = h2o.performance(m)
#cat("rmse: ",perfm@metrics$RMSE,"\n")
nmov = 50
labels = as.vector(data[1:nmov,1])
plot(fR[1:nmov,],pch=17,col="blue",cex=1.5)
text(fR[1:nmov,],labels,col="blue",pos=3) #pos=3 means above
```

Plot of the 2 deep features summarizing the tf-idf values for movies.

Autoencoder for the MNIST digits problem.

Autoencoder structure: $784-1000-500-250-2$

