Topics in Regression

Rob McCulloch

1. Understanding Multiple Regression
2. Regression Model Assumptions
3. Residual Plots
4. Non Linearity
4.1. Problem: Quadratic Fit to the OJ Data
5. Variable Interaction
5.1. Problem: Nbhd Size Interaction
6. The Log, Outliers and Standardized Residuals
6.1. Problem: Log the OJ Data
7. Trees
7.1. Problem: Midcity House Data Tree

4.1. Problem: Quadratic Fit to the OJ Data

Get the data OJ.csv from the webpage.
A chain of gas station convenience stores was interested in the dependency between price of and Sales for orange juice... They decided to run an experiment and change prices randomly at different locations.
(a)

Plot Price vs. Sales.
Clearly the relationship is not linear!!
Plot the fitted values vs. residuals for the linear regression of Sales on Price and Price squared.

What does the residual plot tell us about the appropriateness of the quadratic model?

Solution

(a)

The quadratic fit would certainly be an improvement over a linear fit but the residual plot suggest that there is still some nonlinearity not captured and a non-constant variance.

```
R code:
ojd = read.csv("OJ.csv")
plot(ojd$Price,ojd$Sales)
\circjd$P2 = ojd$Price^2
lmf = lm(Sales ~.,ojd)
par(mfrow=c(1,2))
plot(ojd$Price,ojd$Sales)
oo = order(ojd$Price)
lines(ojd$Price[oo],lmf$fitted[oo],col="red",lwd=3)
plot(lmf$fitted,lmf$residuals)
```


5.1. Problem: Nbhd Size Interaction

Here is the R output for the fit of the model:

$$
\text { price }=\beta_{0}+\beta_{1} \text { size }+\beta_{2} n 3+\epsilon
$$

where n 3 is a dummy for neighborhood 3 .

```
Call:
lm(formula = price ~ size + n3, data = ddf)
Residuals:
\begin{tabular}{rrrrr} 
Min & 1Q & Median & 3Q & Max \\
-35.396 & -9.610 & -1.762 & 8.778 & 38.551
\end{tabular}
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) 18.153 13.574 1.337 0.184
size 
n3
    35.699 3.137 11.379 < 2e-16 ***
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
Residual standard error: 15.81 on 125 degrees of freedom
Multiple R-squared: 0.659,Adjusted R-squared: 0.6536
F-statistic: 120.8 on 2 and 125 DF, p-value: < 2.2e-16
```

In the notes we fit the regression:

$$
\text { price }=\beta_{0}+\beta_{1} \text { size }+\beta_{2} d 1+\beta_{3} d 2+\epsilon
$$

where d 1 and d 2 are dummies for neighborhoods 1 and 2 .
(a)

What is the interpretation of the model having size and n3?

Based on the regression outputs, how does the model with n3 compare to the model with d 1 and d 2 ?
(b)

Let's stick with the model having size and n3 and see if the slope should depend on the neighborhood.

Let's fit the model:

$$
\text { price }=\beta_{0}+\beta_{1} \text { size }+\beta_{2} n 3+\beta_{3} \text { size } \times n 3+\epsilon
$$

Here is the regression output where n 3 size $=\mathrm{n} 3 \times$ size .

```
Call:
lm(formula = price ~ ., data = ddf)
Residuals:
\begin{tabular}{rrrrr} 
Min & 1Q & Median & 3Q & Max \\
-35.411 & -9.770 & -1.701 & 8.942 & 38.579
\end{tabular}
Coefficients:
\begin{tabular}{lrrrrr} 
& Estimate Std. Error & t value \(\operatorname{Pr}(>|\mathrm{t}|)\) \\
(Intercept) & 16.967 & 16.355 & 1.037 & 0.302 & \\
size & 51.278 & 8.275 & 6.197 & \(7.81 \mathrm{e}-09\) & \(* * *\) \\
n3 & 39.692 & 30.611 & 1.297 & 0.197 & \\
n3size & -1.952 & 14.887 & -0.131 & 0.896
\end{tabular}
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
Residual standard error: 15.88 on 124 degrees of freedom
Multiple R-squared: 0.6591,Adjusted R-squared: 0.6508
F-statistic: 79.9 on 3 and 124 DF, p-value: < 2.2e-16
```

Here is the plot of the fit:

Do we need the interaction term in the model?

Solution

(a)

The model with with size and n 3 lumps neighborhoods 1 and 2 together.

The $\hat{\sigma}$ (15.26 and 15.81) and the $R^{2}(.685$ and .66$)$ are not very different. Suggests we could just use the n3 dummy.
(b)

Both the ouput and the plot suggest we don't need the interaction term. The simple linear model seems ok.
\#\# read in data and change compute price and size in thousands hd = read.csv("midcity.csv")
price $=$ hd\$Price/1000
size $=$ hd\$SqFt/1000
\#\# make dummy and interaction, but in ddf data.frame
n3 = as.numeric (hd\$Nbhd==3)
ddf = data.frame(price,size,n3,n3size=n3*size)
\#\# reg with size,n3,n3*size
$\operatorname{lmf}=\operatorname{lm}\left(\right.$ price ${ }^{\sim}$., ddf)
print (summary (lmf))
plot(size, $\operatorname{lmf} \$$ fitted)
\#\# reg with size and n3
$\operatorname{lmf} 1=\operatorname{lm}($ price~size+n3,ddf)
print(summary(lmf1))

6.1. Problem: Log the OJ Data

Get the data OJ.csv from the webpage.
A chain of gas station convenience stores was interested in the dependency between price of and Sales for orange juice... They decided to run an experiment and change prices randomly at different locations.
(a)

Plot Price vs. Sales and \log (Price) vs. \log (Sales).
What does this say about using linear regression to relate Sales to Price??
(b)

Run the regression of \log (Sales) on \log (Price).
Plot the residuals vs. the fitted values.
What does this tell you?

Plot the standardized residuals vs. the fitted values. Any outliers?
(c)

Run the regression of \log (Sales) on $\log ($ Price $)$.
What is your prediction for sales give price $=3.0$?

Solution

(a)

Logged data looks much better.
(b)

No obvious pattern or outliers, looks good!!!
(i) log the price of 3 .
(ii) plug the value from (i) into reg.
(iii) exponentiate result from (ii).

```
Call:
lm(formula = 1S ~ lP, data = ddf)
Residuals:
\begin{tabular}{rrrrr} 
Min & 1Q & Median & 3Q & Max \\
-0.7463 & -0.3399 & 0.0279 & 0.2358 & 0.7547
\end{tabular}
Coefficients:
    Estimate Std. Error t value Pr(>|t|)
l(Intercept) 
--
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
```

Residual standard error: 0.3858 on 48 degrees of freedom
Multiple R-squared: 0.7553,Adjusted R-squared: 0.7502
F-statistic: 148.2 on 1 and 48 DF, p-value: $2.773 \mathrm{e}-16$
$>1 p=\log (3.0)$
> lp
[1] 1.098612
$>\mathrm{ls}=4.812-1.752 * 1 \mathrm{p}$
>1 s
[1] 2.887231
$>\exp (1 \mathrm{~s})$
[1] 17.94356

7.1. Problem: Midcity House Data Tree

Here is a tree fit to the Midcity Housing data having 7 bottom nodes (leaves).

Remember, for a categorical variable a means the first level and b means the second level and so on. So, for Nbhd, (a, b, c) corresponds to $(1,2,3)$ and for Brick a to No and b to Yes.
(a)

Using the tree, what price would you predict for non-brick house in Neibhborhood c=3 ?
(b)

According to the tree, what seems to be the best neighborhood?
(c)

According to the tree, what kind of house has the lowest price?

Solution
(a) 148.2
(b) $\mathrm{c}=3$, the right side of three has higher prices than the left.
(c) A house in Nbhds 1 or $2(\mathrm{ab})$, with size less than 2.02 and not made of brick.

```
hd = read.csv("midcity.csv")
hd$Nbhd = as.factor(hd$Nbhd)
hd$SqFt = hd$SqFt/1000
hd$Price = hd$Price/1000
library(tree)
#first get a big tree using a small value of mindev
temp = tree(Price~.,data=hd,mindev=.0001)
cat('first big tree size: \n')
print(length(unique(temp$where)))
#then prune it down to one with 7 leaves
hd.tree=prune.tree(temp,best=7)
cat('pruned tree size: \n')
print(length(unique(hd.tree$where)))
par(mfrow=c(1,1))
#plot the tree
plot(hd.tree,type="uniform")
text(hd.tree,col="blue",label=c("yval"), cex=1.2)
```

