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4.1. Problem: Quadratic Fit to the OJ Data

Get the data OJ.csv from the webpage.

A chain of gas station convenience stores was interested in the
dependency between price of and Sales for orange juice... They
decided to run an experiment and change prices randomly at
different locations.

(a)

Plot Price vs. Sales.
Clearly the relationship is not linear!!

Plot the fitted values vs. residuals for the linear regression of Sales
on Price and Price squared.

What does the residual plot tell us about the appropriateness of
the quadratic model?
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Solution

(a)
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The quadratic fit would certainly be an improvement over a linear
fit but the residual plot suggest that there is still some nonlinearity
not captured and a non-constant variance.
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R code:

ojd = read.csv("OJ.csv")

plot(ojd$Price,ojd$Sales)

ojd$P2 = ojd$Price^2

lmf = lm(Sales~.,ojd)

par(mfrow=c(1,2))

plot(ojd$Price,ojd$Sales)

oo = order(ojd$Price)

lines(ojd$Price[oo],lmf$fitted[oo],col="red",lwd=3)

plot(lmf$fitted,lmf$residuals)
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5.1. Problem: Nbhd Size Interaction

Here is the R output for the fit of the model:

price = β0 + β1size + β2n3 + ε

where n3 is a dummy for neighborhood 3.

Call:

lm(formula = price ~ size + n3, data = ddf)

Residuals:

Min 1Q Median 3Q Max

-35.396 -9.610 -1.762 8.778 38.551

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 18.153 13.574 1.337 0.184

size 50.675 6.852 7.396 1.78e-11 ***

n3 35.699 3.137 11.379 < 2e-16 ***

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 15.81 on 125 degrees of freedom

Multiple R-squared: 0.659,Adjusted R-squared: 0.6536

F-statistic: 120.8 on 2 and 125 DF, p-value: < 2.2e-16
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In the notes we fit the regression:

price = β0 + β1size + β2d1 + β3d2 + ε

where d1 and d2 are dummies for neighborhoods 1 and 2.

(a)

What is the interpretation of the model having size and n3?

Based on the regression outputs, how does the model with n3
compare to the model with d1 and d2?
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(b)

Let’s stick with the model having size and n3 and see if the slope
should depend on the neighborhood.

Let’s fit the model:

price = β0 + β1size + β2n3 + β3size × n3 + ε

Here is the regression output where n3size = n3 × size.

Call:

lm(formula = price ~ ., data = ddf)

Residuals:

Min 1Q Median 3Q Max

-35.411 -9.770 -1.701 8.942 38.579

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 16.967 16.355 1.037 0.302

size 51.278 8.275 6.197 7.81e-09 ***

n3 39.692 30.611 1.297 0.197

n3size -1.952 14.887 -0.131 0.896

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 15.88 on 124 degrees of freedom

Multiple R-squared: 0.6591,Adjusted R-squared: 0.6508

F-statistic: 79.9 on 3 and 124 DF, p-value: < 2.2e-16 6



Here is the plot of the fit:
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Do we need the interaction term in the model?
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Solution

(a)

The model with with size and n3 lumps neighborhoods 1 and 2
together.

The σ̂ (15.26 and 15.81) and the R2 (.685 and .66) are not very
different. Suggests we could just use the n3 dummy.
(b)

Both the ouput and the plot suggest we don’t need the interaction
term. The simple linear model seems ok.
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## read in data and change compute price and size in thousands

hd = read.csv("midcity.csv")

price = hd$Price/1000

size = hd$SqFt/1000

## make dummy and interaction, but in ddf data.frame

n3 = as.numeric(hd$Nbhd==3)

ddf = data.frame(price,size,n3,n3size=n3*size)

## reg with size,n3,n3*size

lmf = lm(price~.,ddf)

print(summary(lmf))

plot(size,lmf$fitted)

## reg with size and n3

lmf1 = lm(price~size+n3,ddf)

print(summary(lmf1))
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6.1. Problem: Log the OJ Data

Get the data OJ.csv from the webpage.

A chain of gas station convenience stores was interested in the
dependency between price of and Sales for orange juice... They
decided to run an experiment and change prices randomly at
different locations.

(a)

Plot Price vs. Sales and log(Price) vs. log(Sales).

What does this say about using linear regression to relate Sales to
Price??
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(b)

Run the regression of log(Sales) on log(Price).

Plot the residuals vs. the fitted values.
What does this tell you?

Plot the standardized residuals vs. the fitted values.
Any outliers?

(c)

Run the regression of log(Sales) on log(Price).

What is your prediction for sales give price=3.0?
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Solution

(a)
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Logged data looks much better.
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(b)
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No obvious pattern or outliers, looks good!!!
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(c)

(i) log the price of 3.
(ii) plug the value from (i) into reg.
(iii) exponentiate result from (ii).

Call:

lm(formula = lS ~ lP, data = ddf)

Residuals:

Min 1Q Median 3Q Max

-0.7463 -0.3399 0.0279 0.2358 0.7547

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 4.812 0.148 32.50 < 2e-16 ***

lP -1.752 0.144 -12.17 2.77e-16 ***

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 0.3858 on 48 degrees of freedom

Multiple R-squared: 0.7553,Adjusted R-squared: 0.7502

F-statistic: 148.2 on 1 and 48 DF, p-value: 2.773e-16

> lp = log(3.0)

> lp

[1] 1.098612

> ls = 4.812 -1.752*lp

> ls

[1] 2.887231

> exp(ls)

[1] 17.94356 14



7.1. Problem: Midcity House Data Tree
Here is a tree fit to the Midcity Housing data having 7 bottom
nodes (leaves).

|Nbhd:ab

SqFt < 2.02

Brick:a Brick:a

Bathrooms < 2.5

Brick:a

105.8 122.5

111.7 133.1

142.3

148.2 175.2

Remember, for a categorical variable a means the first level and b
means the second level and so on. So, for Nbhd, (a, b, c)
corresponds to (1, 2, 3) and for Brick a to No and b to Yes. 15



(a)

Using the tree, what price would you predict for non-brick house in
Neibhborhood c=3 ?

(b)

According to the tree, what seems to be the best neighborhood?

(c)

According to the tree, what kind of house has the lowest price?
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Solution

(a) 148.2

(b) c=3, the right side of three has higher prices than the left.

(c) A house in Nbhds 1 or 2 (ab), with size less than 2.02 and not
made of brick.
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hd = read.csv("midcity.csv")

hd$Nbhd = as.factor(hd$Nbhd)

hd$SqFt = hd$SqFt/1000

hd$Price = hd$Price/1000

library(tree)

#first get a big tree using a small value of mindev

temp = tree(Price~.,data=hd,mindev=.0001)

cat(’first big tree size: \n’)

print(length(unique(temp$where)))

#then prune it down to one with 7 leaves

hd.tree=prune.tree(temp,best=7)

cat(’pruned tree size: \n’)

print(length(unique(hd.tree$where)))

par(mfrow=c(1,1))

#plot the tree

plot(hd.tree,type="uniform")

text(hd.tree,col="blue",label=c("yval"),cex=1.2)
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