# Modeling with IID Normal Draws Homework Problems Homework Solutions 

Rob McCulloch

1. The Histogram and IID Draws
2. The Normal Distribution and Data
3. Standardization
3.1. Problem: Australian Return Data
3.2. Problem: Unusual Belgian Return?
3.3. Problem: The Random Walk

### 3.1. Problem: Australian Return Data

(a)

Do the time series plot and histogram of the "australia" returns from the countries data (conret.csv). These are returns on a portfolio of Australian equities (stocks).
Does it look reasonable to model the returns as iid draws from a normal distribution?

Note: the "time series plot" is just $i$ versus $x_{i}$ for values $x_{i}$. The is also called the sequence plot. We have already used this plot a lot!!

In Excel: Select the column of Australian returns and then go to /Insert and then play around to find the plot type you like the best.
If you just do scatterplot, it seems to look ok.
In R :

```
cdat = read.csv("http://www.rob-mcculloch.org/data/conret.csv")
plot(cdat$australia,type="b",xlab="year number",
    ylab="Australia Returns",col="blue")
```

(b)

Let $\mu$ be the sample average of the australian returns and $\sigma$ be the sample standard deviation.

If we go ahead and model our returns as iid normal and use these values for $\mu$ and $\sigma$, what is the probability of a negative return?

## (c)

What is the " $z$ " value corresponding to $r=0$
$(z=(r-m u) /$ sigma $)$ ?
Check that $P(Z<z)$ gives you the same number you got in part (b), where $Z \sim N(0,1)$.
(d)
z each australian return.
Do the histogram of the $z$ values.
Does it kind of look like the standard normal pdf?!!
In Excel you could copy the formula
$=(\mathrm{B} 2-\operatorname{AVERAGE}(B 2: B 108)) / \mathrm{STDEV} . S(B 2: B 108)$
in cells 2:108 in column Y (or any empty column).
Remember to copy a formula:

- click in the top cell (e.g. Y2))
- shift/click in the bottom cell (e.g. Y108))
- type in the formula
- enter Cntl/return.

In R:
za $=($ (cdat\$australia - mean(cdat\$australia))/sd(cdat\$australia)

## Solution

(a)


Histogram of australia


Maybe one negative outlier, but overall looks pretty normal.
(b)
mu,sigma: 0.012242990 .05413659
prob of negative return: 0.4105424 .
(c)
$z=(0-0.01224299) / 0.05413659=-0.22615$
$F(-0.22615)=0.4105424$
(d)


Looks pretty good!!

### 3.2. Problem: Unusual Belgian Return?

Do the time series plot of the "belgium" returns form conret.csv.
Notice that the first return seems like an "outlier".
Let $\mu$ be the sample average of the returns, excluding the first one. Let $\sigma$ be the sample standard deviation of the returns, excluding the first one.

What is the $z$ value for the first return?
Is it more unusual than Gretzky?

## Solution



First one really sticks out!!
mu,sigma: 0.011037740 .0416317
$z=(.25-0.01103774) / 0.0416317=5.739911$

Much more unusual than Gretzky!!

### 3.3. Problem: The Random Walk Model

Get the data Price-level.csv from the webpage.
There is just one column called Price.
The data are the monthly price of an asset for 500 months (about 41 years).
(a)

Do a time series plot of the prices.
Could they be modeled as iid ?
(b)

Compute the price differences.
If the prices are denoted by $P_{t}$, then the differences are $D_{t}=P_{t}-P_{t-1}, t=2,3, \ldots, n$.

For example, the first three prices are $0.000000,-1.748190$, and 4.707081
so the first two differences are
$-1.748190-0.000000=-1.74819$ and
$4.707081-(-1.748190)=6.455271$
> Price[1:4]
$\begin{array}{lllll}{[1]} & 0.000000 & -1.748190 & 4.707081 & 8.905969\end{array}$
> -1.748190-0.000000
[1] -1.74819
> 4.707081 - (-1.748190)
[1] 6.455271
Note that in R we could get the differences by
$>\mathrm{ii}=2: n$
> D = Price[ii]-Price[ii-1]
> print(D[1:3])
[1] $-1.748190 \quad 6.4552714 .198888$

Do a time-series plot and a histogram of the differences.

Do the differences look iid normal?
(c)

Give a distribution describing what the next price difference will be.
That is, our last observed price is $P_{500}=609.298161$.
So the next difference is $P_{501}-609.298161$ which is a number we are unsure about because we don't know the next price $P_{501}$.
(d)

Give a distribution describing what the next price $\left(P_{501}\right)$ will be.

Our model is:

$$
D_{t}=P_{t}-P_{t-1} \sim N\left(\mu, \sigma^{2}\right)
$$

This is the very famous random walk model which we can express as

$$
P_{t}=P_{t-1}+D_{t}
$$

The next price, is the current price plus a "random" increment. In this problem we modeled the increment as iid normal.

Solution

Solution.

