Linear Combinations, Covariance and Correlation
 Homework Problems Homework Solutions

Rob McCulloch

1. Mean and Variance of a Linear Function
1.1. Problem: Invest-100
1.2. Problem: Uniform Return
2. Covariance and Correlation for RVs
2.1. Problem: Covariance and Correlation
3. Mean and Variance of a Linear Combination
3.1. Problem: Portfolio Return, Three Risky Assets
3.2. Problem: Sum and Average of IID

1.1. Problem: Invest-100

Suppose you invest $\$ 100$ in an asset.
The return on the asset is the random variable R.
$E(R)=.1$.
$\operatorname{Var}(R)=.01$.
Let W be your end of period wealth so that $W=(1+R) 100$.
(a)

What is $E(W)$?
(b)

What is $\operatorname{Var}(W)$?
(c)

Suppose R is normal.
Any linear function of a a normal random variable is also normal.
Once you know an RV is normal, all you need is its mean and variance and you know the distribution!

What is the distribution of W ?
(d)

What is $\operatorname{Prob}(W>120)$?

Solution
(a)
$W=100+100 R, E(W)=100+100 E(R)=110$.
(b)
$\operatorname{Var}(W)=100^{2} \operatorname{Var}(R)=100^{2}(.01)=100$.
(c)
$W \sim N(110,100)$.
(d)

This is $\operatorname{Prob}(X>\mu+\sigma)$ which is .16 .

1.2. Problem: Uniform Return

Let U be the uniform random variable which is equally likely to be any value between 0 and 1 .

Let R denote a return about which you are uncertain.
Suppose you believe that R is equally likely to be any value between -. 1 and . 2 .
(a) What does the pdf of R look like?
(b) Write R as a linear function of U.
(c)

We know $E(U)=.5$ and $\operatorname{Var}(U)=1 / 12$.
What is $E(R)$?
What is $\operatorname{Var}(R)$?

Solution
(a)

Flat with height $1 / .3=3.3333$ for $(-.1<r<.2)$ and 0 everywhere else.
(b) $R=-.1+.3 U$.
(c)
$E(R)=-.1+.3 E(U)=-.1+.3(.5)=.05$.
$\operatorname{Var}(R)=.3^{2} \operatorname{Var}(U)=.3^{2} / 12=.0075$.

2.1. Problem: Covariance and Correlation

Suppose V and W are discrete RV s with joint distribution give by:

(a) Compute the covariance and correlation between X and Y.
(b) Compute the covariance and correlation between W and V.
(c) Are X and Y independent?
(d) Are W and V independent?
(e)

Are X and Y identically distributed?
Are X and Y iid ?

Solution
(a)
$E(X)=E(Y)=10$.
$\operatorname{Var}(X)=\operatorname{Var}(Y)=25$.
$\operatorname{Cov}(X, Y)=.45 *(5-10) *(5-10)+.05 *(15-10) *(5-$ $10)+.05 *(5-10) *(15-10)+.45 *(15-10) *(15-10)=20$.
$\operatorname{Cor}(X, Y)=\operatorname{Cov}(X, Y) /\left(\sigma_{Y} \sigma_{X}\right)=20 / 25=.8$.
(b)
$E(W)=10, \operatorname{Var}(W)=25$.
$E(V)=.1 * 5+.9 * 15=14$.
$\operatorname{Var}(V)=.1 *(5-14)^{2}+.9 *(15-14)^{2}=9$.
$\operatorname{Cov}(W, V)=.05 *(5-10) *(5-14)+.05 *(15-10) *(5-$
14) $+.45 *(5-10) *(15-14)+.45 *(15-10) *(15-14)=0$.

Since the covariance is 0 , the correlation is 0 .
(c)

The covariance is not 0 , so the cannot be independent.
Clearly $P(Y=15 \mid X=15)=.9>P(Y=15 \mid X=5)=.1$!
(d)

Given $V=5, W$ is 5 or 15 , each with prob . 5 .
Given $V=15, W$ is 5 or 15 , each with prob .5 .
Thus, they are independent.
The 0 covariance is not enough to be sure they are independent! (e)
X and Y have the same marginals (identically distributed) but they are not independent so they are not iid.

3.1. Problem: Portfolio Return, Three Risky Assets

Let R_{f} denote the return on a riskless asset (you get return R_{f} for sure!).
Suppose $R_{f}=.02$.
Suppose R_{1}, R_{2}, and R_{3} are random variables representing returns on three risky assets.
$E\left(R_{1}\right)=.05, E\left(R_{2}\right)=.1, E\left(R_{3}\right)=.15$.
For each risky asset, the standard deviation equals the mean.
The correlation between R_{1} and R_{2} is .5 and R_{3} is independent of R_{1} and R_{2}.

Suppose $P_{1}=.4 R_{f}+.6 R_{3}$.
(a) What is $E\left(P_{1}\right)$?
(b) What is $\operatorname{Var}\left(P_{1}\right)$?
(c) What is the correlation between P_{1} and R_{3} ?

Suppose $P_{2}=.2 R_{f}+.4 R_{1}+.4 R_{2}$.
(d) What is $E\left(P_{2}\right)$?
(e) What is $\operatorname{Var}\left(P_{2}\right)$?
(f) What is the correlation between P_{1} and P_{2} ?

Solution
(a)
$.4^{*} .02+.6^{*} .15=.098$.
(b)
$\left(.6^{2}\right) *\left(.15^{2}\right)=.0081$.
(c)

1 since they are perfectly linearly related.
(d)
$.2^{*} .02+.4^{*} .05+.4^{*} .1=.064$.
(e)

First we need $\operatorname{Cov}\left(R_{1}, R_{2}\right)$.
We are given the correlation and the standard deviations.
So,
$\operatorname{cov}=\operatorname{cor}($ product of sds $)=.5^{*} .5^{*} .1=.0025$.
$\operatorname{Var}\left(P_{2}\right)=$
$\left(.4^{2}\right) *\left(.05^{2}\right)+\left(.4^{2}\right) *\left(.1^{2}\right)+2 * .4 * .4 * .0025=.0028$.
(f)

Since R_{3} is independent of R_{1} and R_{2}, P_{1} is independent of P_{2}. Hence, the correlation is 0 .

3.2. Problem: Sum and Average of IID

Suppose we can play a game with gives a random payout.
Let W_{i} denote the payout on the $i^{\text {th }}$ play of the game.
The W_{i} are iid, with $E\left(W_{i}\right)=0, \operatorname{Var}\left(W_{i}\right)=10$.
(a)

Suppose there is no cover charge and you play the game the first two times so that your total winnings are

$$
T=W_{1}+W_{2}
$$

What are $E(T)$ and $\operatorname{Var}(T)$?
(b)

Suppose you are interested in your average winnings:

$$
\bar{W}=\frac{W_{1}+W_{2}}{2}=\frac{1}{2} W_{1}+\frac{1}{2} W_{2} .
$$

What are $E(\bar{W})$ and $\operatorname{Var}(\bar{W})$?
(c)

Now suppose you play 100 times.

$$
\begin{gathered}
T=W_{1}+W_{2}+\ldots+W_{100}=\sum_{i=1}^{100} W_{i} \\
\bar{W}=\frac{1}{100}\left(W_{1}+W_{2}+\ldots+W_{100}\right)=\frac{1}{100} \sum_{i=1}^{100} W_{i}
\end{gathered}
$$

What are $E(T)$ and $\operatorname{Var}(T)$?
What are $E(\bar{W})$ and $\operatorname{Var}(\bar{W})$?

Solution
(a)
$E(T)=E\left(W_{1}\right)+E\left(W_{2}\right)=2 * 0=0$.
$\operatorname{Var}(T)=\operatorname{Var}\left(W_{1}\right)+\operatorname{Var}\left(W_{2}\right)=2 * 10=20$.
(b)
$E(\bar{W})=\frac{1}{2} E\left(W_{1}\right)+\frac{1}{2} E\left(W_{2}\right)=.5 * 0+.5 * 0=0$.
$\operatorname{Var}(\bar{W})=\frac{1}{2^{2}} \operatorname{Var}\left(W_{1}\right)+\frac{1}{2^{2}} \operatorname{Var}\left(W_{2}\right)=\frac{1}{2^{2}}(2 * 10)=\frac{10}{2}=5$.
Alternatively, you could notice that $\bar{W}=\frac{1}{2} T$, so that
$\operatorname{Var}(\bar{W})=\frac{1}{2^{2}} \operatorname{Var}(T)=20 / 4=5$.
(c)
$E(T)=0, \operatorname{Var}(T)=100 * 10=1000$.
$E(\bar{W})=\left(\frac{1}{100}\right)(100 * 0)=0$.
$\operatorname{Var}(\bar{W})=\frac{10}{100}=.1$
(d)

$$
E(\bar{X})=\mu, \quad \operatorname{Var}(\bar{X})=\frac{\sigma^{2}}{n} .
$$

