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1. The Audit

You are in charge of the process which fills cereal boxes.

Ideally, the amount of cereal going into a box should weigh 350
grams but a weight in range 350± 20 = (330, 370) is considered
acceptable.

You have modeled the performance of the current process as iid
normal N(344, 152).

The weights look like iid draws from a N(344, 152).

Yi ∼ N(344, 152), where Yi is the weight of cereal in the i th box.
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The probability (under the normal model) that the next weight is
in the acceptable range is .78.

It would be better if the distribution was centered at 350 and less
variable (µ = 350, smaller σ) !!

Your are working on it, but for now, it is what is it.

At least the process is “under control” so you can work on
improving it.
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You are about to be audited !!!

They audit you by:

I getting the weights of the cereal in 10 boxes

I computing the average weight from the 10.

I if the average weight is in (330,370) you are ok.

What are your chances??
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Well, you know how to compute the probability the next weight is
in (330,370).

But what about the probability the average of the next 10 is in the
interval???

Is the average more likely to be in the interval than an individual
weight?

4



Hey, why not just take the average of successive batches of 10
(from the 500) and see what they look like??!!

The little (red) bars are at the averages of successive groups of 10
observations.
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Phew!! Looks like it is very unlikely that average will be outside
the (330,370) range!
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You feel a lot better, but there are only 50 means and some are
close to the acceptable boundary.

Is there a better way to get a handle on what you really want
which is

P(330 < Ȳ < 370)?

Where Ȳ is the mean the auditors will get when they sample 10.

Ȳ is a random variable !!!!
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2. The Distribution of the Sample Mean

You find out that:

For,
Yi ∼ N(µ, σ2), iid,

if Ȳ is the average of Y1,Y2, . . . ,Yn then,

Ȳ ∼ N(µ,
σ2

n
)

Perfect.

7



Your model is that the weights are iid N(344, 152).

The audit is about to get the average of 10 draws.

If Ȳ denotes the average of the ten then,

Ȳ ∼ N(344, 152/10).

The probability of passing the audit is

P(330 < Ȳ < 370) =

= F (370)− F (330)

= 1− 0.001581382 = 0.9984186

where F is the cdf for N(344, 152/10).

8



Y ∼ N(344, 152). Ȳ ∼ N(344, ( 152

10 ) = 4.742).

Histogram is of the 50 means of 10.
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Looks reasonable !!!!

What would the normal pdf for the average of 100 look like?
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3. Estimating a Normal Mean

The audit scare is over. You can sleep at night.

While the means of 10 vary, they do not vary enough to make it
likely you will fail the audit.

Then it occurs to you:

Hey, I’ve been using the mean of 500 to pick µ for my normal,

how wrong could that be ????!!!!

10



What does “wrong” mean?

Once you model the weights as

Yi ∼ N(µ, σ2)

what you really need to know is µ, the “true” center of the
normal curve, or, the true long run average.

The mean of 344 (using all 500 observations) is still just a guess,
or estimate of µ.

While we expect the mean of of 500 to be pretty close to the true
mean µ (for example, better than the mean of 10) we’d like to
know the possible error!!

11



Imagine we are about to get a sample of size n and then use the
sample mean to estimate µ, how is the sample mean related to µ?

Ȳ ∼ N(µ,
σ2

n
)

This tells us how different our estimate is
likely to be from the true µ!

µ − 2σ n µ + 2σ nµ

There is a 95% chance the error (the difference between µ
and what Ȳ turns out to be) will be less than ±2 σ√

n
!!! 12



So, there is a 95% chance that our error will be less than ±2 σ√
n

.

and
σ√
n
≈ sy√

n

where the error in in this estimate is small enough that we don’t
have to worry about it for n ≥ 20.

13



So, with probability 95%, our estimation error
(using Ȳ to estimate µ) is:

±2
σ√
n
≈ ±2

sy√
n

For our weights data, Ȳ turned out to be ȳ = 344.22.

sy = 15.33.
sy/
√
n = 15.33/

√
(500) = .686.

So, estimate ± error is:

344.22± 2(.686) = 344.22± 1.37 = (342.85, 345.59).

Pretty small!!! Phew again!!!

Acting as if µ = 344 is reasonable.
14



Summary:

Let’s summarize the ideas, the procedure, and the jargon.

For, Y1,Y2, . . . ,Yn ∼ N(µ, σ2), iid,

Ȳ =
1

n

∑
Yi

is the estimator for µ.

Given our normal model, we plan to get a sample of size n and use
the average as as estimate of µ.

Before we take the sample, Ȳ is a random variable,
it is our estimator.

After we get the a sample, Ȳ will turn out to be ȳ .
ȳ is our estimate.

15



The sampling distribution of the estimator is

Ȳ ∼ N(µ,
σ2

n
).

The sampling distribution tells us what kind of estimate we are
likely to get from our estimator given the true values of the
parameters µ and σ.

Our estimate is likely to be close to the true value µ if:

I σ is small so that each Yi tends to be close to µ.

I n is big.

16



Note:
E (Ȳ ) = µ.

We say that Ȳ is an unbiased estimator.

Any particular estimate will
end up being too big or too
small.

But, on average, they are right.

µ − 2σ n µ + 2σ nµ

17



Note:

E (s2
y ) = σ2

The sample variance is an unbiased estimator of σ2.

This is why we divide by (n − 1), if we just divide by n, the
estimate would tend to be too small.
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The standard error of the mean is

se(ȳ) =
sy√
n

The standard error is an estimate of the standard deviation of Ȳ .

Given Y1,Y2, . . . ,Yn iid, N(µ, σ2), for n ≥ 20, the
(approximate) 95% confidence interval for µ is

ȳ ± 2 se(ȳ)

Before you take your sample, you have a 95% chance µ will be in
the confidence interval!!

19



Small n:

For n less than about 20, just plugging in our estimate sy can
introduce too much error.

We are going to skip the details, but there is an adjustment you
can make using the “tvalue”.

Given Y1,Y2, . . . ,Yn iid, N(µ, σ2) the (exact) 95%
confidence interval for µ is

ȳ ± tval se(ȳ)

Tvals:

n 5.00 10.00 15.00 20.00 25.00 30.00 35.00 40.00 45.00 50.00 1000.00

tval 2.78 2.26 2.14 2.09 2.06 2.05 2.03 2.02 2.02 2.01 1.96

To get the tval: Excel: =tinv(.05,n-1), R: abs(qt(.025,n-1)).
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Bottom line:

Confidence interval small: GOOD, you know a lot.

Confidence interval big: BAD, you don’t know a lot.

21



Example:

Previously, we modeled the Canadian returns as iid Normal.

Let’s get the 95% confidence interval for µ.

n = 107.
ȳ = .009.
sy = .038.
se(ȳ) = .0037.
2 ∗ se = .0074.

ci:

.009 ± .0074. =

(0.0017, 0.01650)
Canadian returns

F
re

qu
en

cy

−0.10 −0.05 0.00 0.05 0.10

0
5

10
15

20
25

Is this a big interval?
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Predictive Intervals for IID Normal Data:

Suppose we would like to predict how much cereal will go in the
next box?

For iid normal data,
The predictive 95% interval is:

ȳ ± 2 sy

√
1 +

1

n

Note: for n “big” ȳ ≈ µ, sy ≈ σ and
√

1 + 1
n ≈ 1 so that the

interval is like ȳ ± 2sy ≈ µ± 2σ.

23



For the 500 cereal observations:
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4. The Confidence Interval for a Bernoulli p

For, Y1,Y2, . . . ,Yn iid Bernoulli, we use the sample
proportion to estimate the true Bernoulli p. We call
this estimate p̂. The associated standard error is:

se(p̂) =

√
p̂ (1− p̂)

n

The (approximate) 95% confidence interval for a
Bernoulli p is:

p̂ ± 2se(p̂)

25



Example:

Previously, we modeled defects as iid Bernoulli.

We had n = 300 and p̂ = .18.

Now we can assess the accuracy of this estimate!!!

se:
√

.18∗.82
300 = .0222.

2*se: .0444
Confidence interval: .18± .0444 = (0.14, 0.22).

BIG!!

Note: Probability next 10 are good is?

If p were .14, we would get: (1− .14)10 = .22
If p were .22, we would get: (1− .22)10 = .08

26



Example:

A random sample of 1,097 voters were asked how many would vote
for candidate A.

44% responded they would vote for A.

Let p be the probability that a randomly selected voter would vote
for A.

p̂ = .44.

2 ∗
√
.44 ∗ (1− .44)/1097 = 0.0299 ≈ .03.

Confidence Interval: .44 ± .03 = (.41,.47).

27



What if n is not way smaller than N ??

In the polling example, our assumption is that we take a sample of
size n from a population of size N where n << N.

If n is not way smaller than N, the iid assumption may not be
reasonable. In that case we need the finite population correction to
get the right standard error:

se(p̂) =

√
p̂ (1− p̂)

n

√
N − n

N − 1

What happens in this formula if N >> n?

28



Note:

Under the iid Bernoulli model, the sample proportion is an
unbiased estimate:

E (p̂) = p.

In the sampling from a large population example, since everyone
has the same chance of being sampled, on average you get it right.

This can fail when we don’t have a random sample.

These internet ratings are worthless, there are always a
few people who are pissed off and those are the ones that
go online and enter a rating.

The new restaurant has 10 ratings and they are all 5 out
of 5. All that tells me is that the owner has exactly 10
friends.

29



5. The Improved Cereal Process

Remember our cereal box filling process was off center and too
variable.

Definitely not 6σ quality!!

The process was supposed to be centered at 350 and
350± 20 = (330, 370) is the range of acceptable weights.

30



You go on vacation and while you are away, your assistant works
on the process.

When you get back, the assistant claims the process is much
tighter and it is correctly centered, that is, µ = 350 !!!

There is data of weights from 100 boxes from the new process.
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Wow, it does look much better !!!!!
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The average weight is 352.08.
The sample standard deviation is 5.3.
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You say the mean is a little high, but your assistant says, “hey, it is
just a sample of 100, I could still be right that the true mean is
350!!”

When someone claims they know the true parameter value we can
test the hypothesis that the claim is true.

Your assistant claims µ = 350.

We will test the hypothesis that µ = 350.
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The basic reasoning behind testing is:

If the claim were true, what would the data look like?

If the data looks like something you could get
if the claim were true,
you cannot reject it.

But, if you get something that would be unlikely
if the claim were true,
you can reject it.
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For a hypothesis about µ given the N(µ, σ2) model, we “look at
the data” by looking at the sample mean.

We ask if the claim were true, what kind of sample mean would we
get?

We got a mean of 352.08.
Is that likely if µ = 350???

If the claim is true (µ = 350) then

Ȳ ∼ N(350, σ2/100).
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Ȳ ∼ N(350, σ2/100).

Well, we have a problem since we don’t know σ.

However for n greater than about 20 (sound familiar?) it turns out
you can plug in the sample standard deviation without making too
much of an error.

So, now we have, if the claim is true,

Ȳ ∼ N(350, 5.32/100) = N(350, .532).

Notice that .53 is just se(ȳ) =
sy√
n

= 5.3
10 .
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Here is the density of Ȳ (if the claim is true) with the observed ȳ
(the big blue dot).
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If the claim µ = 350 were true, it would be quite unlikely to
observe ȳ = 352.08, so we reject the claim.
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To further get a sense of how unusual ȳ = 352.03 would be if the
claim were true, we can “z it”.

If the claim were true the right way to z it would be:

z =
ȳ − 350

σ/
√
n
≈ ȳ − 350

se(ȳ)
=

352.08− 350

.53
= 3.92.

If the claim were true, getting ȳ = 352.08 would be just like
getting 3.92 from a standard normal - not too likely.

We reject the claim.
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6. Testing a Normal Mean

Here is the formal summary and jargon for what we just did.

To test the null hypothesis (the claim)

Ho : µ = µo

against the alternative hypothesis

HA : µ 6= µo

We compute the test statistic

t =
ȳ − µo

se(ȳ)

We reject at level .05 if |t| > 2.
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The test statistic is called a “ t statistic”.

For small n is should look like a draw from the t distribution - we
are skipping this.

For larger n (≥ 20) the t should look like a z!!.

If the null hypothesis is true, the t statistic should look like a draw
from the standard normal.
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Example:

Here is the R output for the test we have done (µ = 350).

> t.test(weights,mu=350)

One Sample t-test

data: weights

t = 3.9323, df = 99, p-value = 0.0001562

alternative hypothesis: true mean is not equal to 350

95 percent confidence interval:

351.0308 353.1306

sample estimates:

mean of x

352.0807

If the null were true, the sample mean we got would be like getting
3.9 from the standard normal; the t stat is bigger than 2 ⇒ reject.
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Note:

The level of the test is the probability of rejecting a null hypothesis
that is true.

If the null is true, the t should look like a z, a standard normal
draw.
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If we reject when |t| > 2 then the chance of rejection is .05,
(if the null is true).
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Note:

If |t| < 2, we do not accept the null hypothesis -
we “fail to reject it” !!!

What the....

This is because the t stat can be small for two very different
reasons:

t =
ȳ − µo

se(ȳ)

(a) You could have the top is very, very small and the bottom is
small, in this case you might accept.

(b) But, you could also have a small t just because the bottom is
very big, in which case your data is not informative and you should
not accept the null since that would imply you decided it is true.
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Example:

Let’s test whether the true mean return for Finland is 0, using the
conret.csv data set.

Here is the R output:

> t.test(finland)

One Sample t-test

data: finland

t = 1.3138, df = 106, p-value = 0.1918

alternative hypothesis: true mean is not equal to 0

95 percent confidence interval:

-0.005043264 0.024856348

sample estimates:

mean of x

0.009906542

Here we cannot reject, but we sure do not want to accept, the
confidence interval is huge!!

We fail to reject the null hypothesis. 44



Confidence Intervals are less confusing !!!

In the Finland example we could see what was going on by looking
at the confidence interval - there was a lot of uncertainty!!!

In the weights example the confidence interval is
(351.0308, 353.1306).

Your assistant says “Ok, maybe it is not perfectly centered, but it
looks like we are pretty sure it is darn close!!”

In both cases, the confidence interval seems much more useful
than the test!!

The only catch with the confidence interval is that you have to
understand what your problem is when you decide if it is big or
small but that is a good thing!!
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7. p-values

If the null is true, our t test-statistic should look like a draw from
the standard normal, our t should look like a z.
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If we reject when |t| > 2, then, P(reject | Ho true) ≈ .05.
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But sometimes we don’t have to make a decision right away.

Rather than just rejecting/(fail to reject) we want to simply report
how far out in the tail the t-statistic is.

The further out it is, the “more evidence” there is against the null.

I t=4, strong evidence against the null.

I t=2.01, some evidence against the null.

I t=1.99, some evidence against the null.

I t=1, no evidence against the null.

The p-value is just a way of measuring “how far out in the tail”
the t-statistic is.
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The p-value is the probability of getting a t test-statistic as far out
or farther, if the null is true.

t = 1.
p-val is prob of
greater than 1 or
less than -1 = .32.

t = -2.
p-val is prob of
greater than 2 or
less than -2 = .05.

t = 3.
p-val is prob of
greater than 3 or
less than -3 =
.0027.

t = 4.
p-val is prob of
greater than 4 or
less than -4 =
.00006.
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Note: p-value = 2 ∗ F (−|t|), where F is the standard normal CDF.
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Example:

Recall that we tested whether the true mean of the Finnish returns
is equal to 0.

> t.test(finland)

One Sample t-test

data: finland

t = 1.3138, df = 106, p-value = 0.1918

alternative hypothesis: true mean is not equal to 0

95 percent confidence interval:

-0.005043264 0.024856348

sample estimates:

mean of x

0.009906542

The reported p-value is about:

2 ∗ F (−1.3131) = .1889.
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8. p-values and testing
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If t is a little less than 2, the p-value will be a little bigger than .05.

If t is a little greater than 2, the p-value will be a little smaller
than .05.

If you want to test at level .05, you can reject if the p-value is less
than .05 .
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This works generally,

to test at level α,

reject if p-value < α !!!

SMALL p ⇒ REJECT.

We use this testing/p-value setup for all kinds of Hypotheses !!!
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Example:

Previously, we modeled the returns on “Canada” as iid normal.

We did this by eye-balling the time-series plot and the histogram.

We can test the null-hypothesis that the returns are normal,
assuming they are iid.

Shapiro-Wilk normality test

data: can

W = 0.98607, p-value = 0.3307

big p-value ⇒ Fail to reject.
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We can test if the Canadian returns are iid:

Runs Test

data: can

statistic = 0.31954, runs = 50, n1 = 49, n2 = 46, n = 95, p-value =

0.7493

alternative hypothesis: nonrandomness

big p-value ⇒ Fail to reject.
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We can test if the true mean of the Canadian returns is 0:

One Sample t-test

data: can

t = 2.4467, df = 106, p-value = 0.01606

alternative hypothesis: true mean is not equal to 0

95 percent confidence interval:

0.001719553 0.016411288

sample estimates:

mean of x

0.009065421

small p-value ⇒ reject.
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Warning:

The tests are not infallible.

Inevitably, for complex hypotheses, the tests will be more sensitive
to some alternatives than others.

The best test is the intra-ocular test !! (look at your data, it
should hit you right between the eyes !!)
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Fama:

With formal statistics, you say something - a hypothesis -
and then you test it. Harry always said that your criterion
should be not whether or not you can reject or accept the
hypothesis, but what you can learn from the data. The
best thing you can do is use the data to enhance your
description of the world. That has been the guiding light
of my research. You should use market data to
understand markets better, not to say this or that
hypothesis is literally true or false. No model is ever
strictly true. The real criterion should be: Do I know
more about markets when I’m finished than I did when I
started?

For example, look at the CI and interpret it, rather than blindly
accept the test!!
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